2017/01/09 SKA-JP high-zグループ「銀河進化と遠方宇宙2017」研究会@熊本

Multitracer technique for galaxy bispectrum

共同研究者:横山修一郎(立教大),高橋慶太郎(熊本大), 高橋智(佐賀大)

山内 大介 神奈川大学 エ学部 物理学教室

宇宙論研究の現状

とにかく原始揺らぎのことが知りたい!

原始曲率揺らぎ ightarrowスケール不変からのわずからのズレ(5 σ) $P_{\Phi}(k) \propto k^{-0.04}$ [WMAP, Planck,...]

原始重力波 → 原始曲率揺らぎの10%以下 [Planck]
[future : LiteBIRD, COrE+, PIXIE,...]

-<mark>原始揺らぎの統計性</mark> → 「ほぼ」ガウス分布 [Planck]

✓ ガウス分布からのズレをパラメータ化

:非線形パラメータf_{NL} [Komatsu+Spergel (2001)]

原始バイスペクトル(3点関数)いろいろ

▶ 局所型:非線形相互作用に敏感

 $B_{\Phi}^{\text{local}}(k_1, k_2, k_3) = 2 f_{\text{NL}} (P_{\Phi}(k_1) P_{\Phi}(k_2) + \text{cyc})$

▶"**非**"局所型

・ 正三角形型:音速に敏感

$$B_{\Phi}^{eq}(k_1, k_2, k_3) = 6 f_{NL} [- (P_{\Phi}(k_1) P_{\Phi}(k_2) + cyc) - 2 (P_{\Phi}(k_1) P_{\Phi}(k_2) P_{\Phi}(k_3))^{2/3} + (P_{\Phi}^{1/3}(k_1) P_{\Phi}^{2/3}(k_2) P_{\Phi}(k_3) + 5perm)]$$

・ 直交型:真空の取り方に敏感

$$\begin{split} B_{\Phi}^{\text{orth}}(k_1, k_2, k_3) &= 6 \, f_{\text{NL}} \left[-3(P_{\Phi}(k_1) P_{\Phi}(k_2) + \text{cyc}) \right. \\ &- 8 \, (P_{\Phi}(k_1) P_{\Phi}(k_2) \, P_{\Phi}(k_3))^{2/3} \\ &+ 3 \, (P_{\Phi}^{1/3}(k_1) P_{\Phi}^{2/3}(k_2) \, P_{\Phi}(k_3) + 5 \text{perm}) \,] \end{split}$$

A Key Science with SKA1 and SKA2

List of highest priority SKA1 science

Science Goal	SWG	Objective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

"Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales"

銀河を数えて原始非ガウス性を探そう

▶ 原始非ガウス性があると、銀河バイアスに スケール依存性が生まれる

 $P_{gal} = [b_1(M,z) + f_{NL}\beta_f(M,z)/k^2D_+(z)]^2 P_{\delta}$

Observables	Surveys	SKA Phase	Redshifts	Coverage (deg²)	Galaxy number
HI 21cm	HI galaxy redshift survey	Phase-1	z<0.8	5,000	~ 107
line		Phase-2	z<2	30,000	~ 10 ⁹
HI 21cm	HI intensity mapping	Phase-1	z<3	30,000	
line		Phase-2	z<3.7	30,000	
synchrotron	Radio continuum	Phase-1	z<6	30,000	~ 10 ⁸
rad.		Phase-2	z<6	30,000	~ 10 ⁹
synchrotron	Weak lensing	Phase-1	z<3	5,000	3 [arcmin ⁻²]
rad.		Phase-2	z<6	30,000	10 [arcmin ⁻²]
optical/IR	e.g. <i>Euclid</i>		z<2	15,000	~ 10 ⁸

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [μJy] $\Delta \theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

サンプルバリアンス

≻パラメータ⊖の決定精度

ノイズをゼロにする極限でも決定精度は有限に留まる

サンプルバリアンス : 独立モードの有限性によるノイズ

マルチトレーサー法

Q:サンプルバリアンスノイズは排除不能か?

$$\sigma(\boldsymbol{\theta}) = (F_{\boldsymbol{\theta}\boldsymbol{\theta}})^{-1/2} = (d\boldsymbol{P}/d\boldsymbol{\theta} \cdot Cov[\boldsymbol{P},\boldsymbol{P}]^{-1} \cdot d\boldsymbol{P}/d\boldsymbol{\theta})^{-1/2}$$

マルチトレーサー法

マルチトレーサー法

銀河バイスペクトルへの応用

▶ 簡便のため、正三角形型のみ考える

 $B^{(abc)}(k,k,k) = (b_1^{(a)}b_1^{(b)}b_{2,eff}^{(c)} + (perm))P_L^2(k)$ $\sigma(\Theta) = (F_{\Theta\Theta})^{-1/2} = (dB/d\Theta \cdot Cov[B,B]^{-1} \cdot dB/d\Theta)^{-1/2}$ $B = \{ B^{(111)}, B^{(112)}, B^{(122)}, B^{(222)} \}$ $= \{ \alpha^2 \gamma B_2, (\alpha^2 + 2\alpha\gamma) B_2/3, (2\alpha + \gamma) B_2/3, B_2 \}$

Cov[B,B]は複雑になるがα, γ, r, P2で書くことができる

銀河バイスペクトルへの応用

▶ 簡便のため、正三角形型のみ考える

 $B^{(abc)}(k,k,k) = (b_1^{(a)}b_1^{(b)}b_{2,eff}^{(c)} + (perm))P_L^2(k)$ $\int_{f_{NL}} \sigma$ 寄与が含まれる

 $\sigma(\boldsymbol{\gamma}) = (F_{\boldsymbol{\gamma}\boldsymbol{\gamma}})^{-1/2} = (d\boldsymbol{B}/d\boldsymbol{\gamma} \cdot Cov[\boldsymbol{B},\boldsymbol{B}]^{-1} \cdot d\boldsymbol{B}/d\boldsymbol{\gamma})^{-1/2}$

 $\sigma(\gamma = b_{2,eff}^{(1)}/b_{2,eff}^{(2)})$ $\rightarrow (3P_2^{-3}/B_2^{-2})^{1/2} ((P_2N_1)^{-1} + \alpha^2(P_2N_2)^{-1})^{1/2}$ 銀河バイスペクトルについてもマルチトレーサー法を使う とノイズを小さくすればしただけ決定精度が上がることを 示すことが出来た!

非局所型f _{NL} は銀河 決まらないのか?	「サーベイでは
$f_{\rm NL}^{\rm loc} \rightarrow \Delta b [f_{\rm NL}^{\rm loc}] \propto 1/k^2$	
$g_{\rm NL}^{\rm loc} \rightarrow \Delta b[g_{\rm NL}^{\rm loc}] \propto 1/k^2$	- 強い依存性
$\tau_{\rm NL}^{\rm loc} \rightarrow \Delta b[\tau_{\rm NL}^{\rm loc}] \propto 1/k^4$	■ 銀河パワースペクトル 解析で検出可能
$f_{\rm NL}^{\rm eq} \rightarrow \Delta b[f_{\rm NL}^{\rm eq}] \propto 1/k^0$	
$f_{\rm NL}^{\rm fol} \rightarrow \Delta b [f_{\rm NL}^{\rm fol}] \propto 1/k^1$	- 弱い依存性
$f_{\rm NL}^{\rm orth} \rightarrow \Delta b [f_{\rm NL}^{\rm orth}] \propto 1/k^1$	■ 銀河バイスペクトル 解析で検出可能!

[e.g., Matsubara(2012)]

決定精度:銀河数密度依存性

決定精度:銀河数密度依存性

決定精度:銀河数密度依存性

将来の銀河サーベイ

13/15

揺らぎの生成機構の詳細に迫る

▶ 一般化された局所型バイスペクトル [Shandere+Dalal+Huterer (2011)]

 $B_{\Phi}(k_{1},k_{2},k_{3}) = 2 f_{\text{NL}}^{\text{eff}} \left[\xi_{\text{s}}(k_{3})\xi_{\text{m}}(k_{1})\xi_{\text{m}}(k_{2})P_{\Phi}(k_{1})P_{\Phi}(k_{2}) + \text{cyc.} \right]$ with $\xi_{\text{s.m}}(k) = (k/k_{\text{piv}})^{n_{f\text{NL}}(s,m)}$

✓ 原始バイスペクトルが非自明なスケール依存性を持つ!
☆ 揺らぎ生成モデル(カーバトン等)に強く依存!

✓ スケール依存するバイアスも誘起

[Matsubara(2012), Desjacques+Jeong+Schmidt(2011), Shandere+Dalal+Huterer (2011)]

▶ パワー/バイスペクトルを組み合わせた解析

[DY+S.Yokoyama+T.Takahashi, work in progress]

揺らぎの生成機構の詳細に迫る

まとめ

①マルチトレーサー法は銀河バイスペクトルでも効果的

② サンプルバリアンスを超えて、局所型でない非線形 パラメータ($f_{NL}^{eq}, f_{NL}^{orth}$)が決定できる

[DY, S.Yokoyama, K.Takahashi, 1611.03590]

③ スケール依存する原始非ガウス性への拡張 → カーバトンモデルの峻別

[DY, S.Yokoyama, T.Takahashi, work in progress]