Constraining modified gravity with galaxy bispectrum

DY, S.Yokoyama, H.Tashiro, PRD96, 123516(2017)

Daisuke Yamauchi Kanagawa University

Modified gravity theories

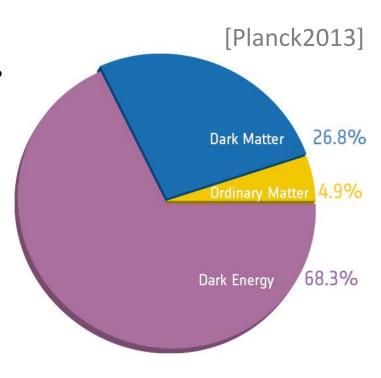
- ➤ General relativity: massless spin-2
- ➤ Modified gravity: A new d.o.f. is introduced to achieve the accelerating expansion

f(R), DGP, Galileons, (beyond-)Horndeski, massive gravity, ...

- ✓ Scalar-tensor theories
 - Gravity is mediated by g_{μν} and φ
 - Can capture essential modification of gravity

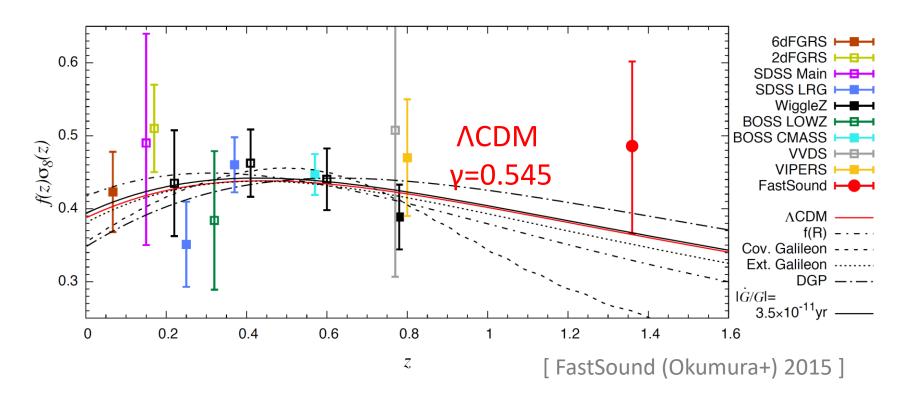
Why modified gravity?

- Discovery of cosmic acceleration
 - : Our understanding of the Universe is incomplete!
- > Need better understanding of gravity:
 - -- Dark energy or modified gravity?
 - Small scale: consistent with experiments in the solar-system and on the Earth
 - Large scale : can be tested though the cosmological observations



Constraining modified gravity with LSS

- \triangleright Gravitational growth index γ : $f(a) = \Omega_{\rm m}(a)^{\gamma}$
 - a powerful tool to test the modified gravity responsible for the present cosmic acceleration



Current constraint on growth index Y

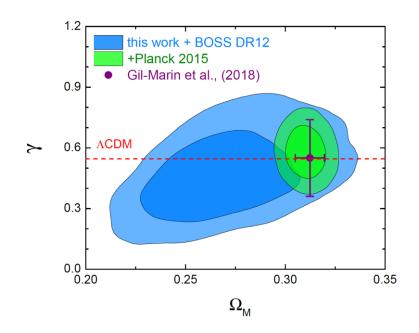
```
\gamma = 0.566 +- 0.056 (68\%CL) [Mueller+(2016) : SDSS-III]
```

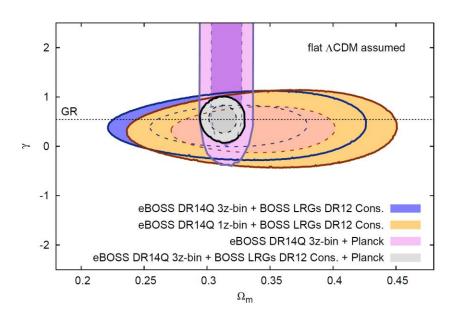
 $\gamma = 0.609 + -0.079 (95\%CL) [Sanchez+(2017) : SDSS-III]$

 $\gamma = 0.54 +- 0.11 (68\%CL) [Grieb+(2016) : SDSS-III]$

 $\gamma = 0.580 + 0.082 (95\%CL) [Zhao+(2018) : eBOSS DR14]$

 $\gamma = 0.54 +- 0.19 (95\%CL) [Gil-Marin(2018) : eBOSS DR14]$





Is y enough?

- ➤ Need new possible parameterizations to capture the essence of the modified gravity theory!
 - --Quasi-nonlinearity of the growth as a way to provide new insight
 - Late-time nonlinear gravitational evolution have new information, which would not be imprinted on the growth index

Second-order index ξ

- \triangleright Gravitational growth index γ : $f(a) = \Omega_{\rm m}(a)^{\gamma}$
 - -- In order to compare the observational data and theoretical predictions efficiently, introducing γ should be useful.

However,

-- There are many models in which the expansion history and the growth rate are same in the fiducial model.

- -- The new parameter is needed to distinguish and hopefully exclude these model!
 - \triangleright Second-order index ξ : $\lambda(a) = \Omega_{\rm m}(a)^{\xi}$

Evolution of density perturbation

> The governing equations for matter fluctuations:

$$\begin{cases} \delta_{m} + (1/a) \nabla \cdot [(1+\delta_{m})v] = 0 \\ v + H v + (1/a)(v \cdot \nabla) v = -(1/a) \nabla \Phi \end{cases}$$

The effect of the gravity theory on the evolution of the matter perturbations δ_m appears only through the gravitational potential Φ .

Bispectrum due to nonlinear growth

$$B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3; z) = 2D^4(z) \ Z_1(\mathbf{k}_1; z) Z_1(\mathbf{k}_2; z) Z_2(\mathbf{k}_1, \mathbf{k}_2; z) P(k_1) P(k_2) + \text{cyc}$$
 with
$$Z_1(\mathbf{k}; z) = b_1 + f\mu^2$$

$$Z_2(\mathbf{k}_1, \mathbf{k}_2; z) = b_2/2 + b_1 F_2(\mathbf{k}_1, \mathbf{k}_2; z) + f\mu_{12}^2 G_2(\mathbf{k}_1, \mathbf{k}_2; z) + \dots$$

 F_2 , G_2 have information of nonlinear growth

Second-order perturbative kernel

$$\begin{split} F_{2}(k_{1},k_{2};z) &= \alpha_{s}(k_{1},k_{2}) - (2/7) \; \lambda(z) \; \gamma_{s}(k_{1},k_{2}) \\ G_{2}(k_{1},k_{2};z) &= \alpha_{s}(k_{1},k_{2}) - (4/7) \; \lambda_{\theta}(z) \; \gamma_{s}(k_{1},k_{2}) \\ &[\; \lambda = \lambda_{\theta} = 1 \; \text{in EdS} \; , \; \lambda, \lambda_{\theta} \stackrel{:}{=} 1 \; \text{in } \Lambda \text{CDM} \; [\text{Scoccimarro+Couchiman } (2001)] \;] \end{split}$$

Horndeski theory

: The most general scalar-tensor theory with second-order field equations.

$$\mathcal{L} = G_{2}(\phi, X) - G_{3}(\phi, X) \square \phi$$

$$+ G_{4}(\phi, X)R + \frac{\partial G_{4}}{\partial X}(\phi, X) \left[(\square \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi)^{2} \right]$$

$$+ G_{5}(\phi, X)G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi$$

$$- \frac{1}{6} \frac{\partial G_{5}}{\partial X}(\phi, X) \left[(\square \phi)^{3} - 3 \square \phi (\nabla_{\mu} \nabla_{\nu} \phi)^{2} + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^{3} \right]$$

- ✓ have 4 arbitrary functions of φ and X=-1/2($\nabla \varphi$)².
- ✓ is quite useful for a comprehensive study of modified gravity.

EFT Parametrization

Instead of considering the Horndeski functions $G_a(\phi,X)$, the EFT parameters is used to specified the cosmological information :

Linear perturbation

M: effective Planck mass

 $\alpha_{\rm M}$: Planck mass run rate $\alpha_{\rm M}$ =dlog M^2 /dlog α

 $\alpha_{\rm T}$: GW (tensor) speed excess $c_{\rm T}^2 = 1 - \alpha_{\rm T}$

 α_{R} : braiding

[Bellini+Sawicki (2014), Gleyzes+(2013), Bloomfield (2013),

 $\alpha_{\rm K}$: kineticity (see also Creminelli+(2009), Gubitosi+(2013), Bloomfield(2012))]

➤ To include the 2nd order perturbations, two other functions are required

 α_{V1} , α_{V2} : Vainshtein screening amplitude [(see also Bellini+(2015))]

Small-scale effective Lagrangian

- Impose quasi-static approximation
 Neglect the higher order metric perturbations Ψ & Φ
 Keep all terms with second-derivative of Q = H δφ

: $\nabla^2 Q$ can be large, leading to self-screening in the vicinity of source

> Linear order

$$L_{\text{eff}}^{(2)} = aM^2 \left[2\Psi \nabla^2 \Phi - (1 + \alpha_T)\Psi \nabla^2 \Psi - (\alpha_T + ...)Q \nabla^2 Q - 2\alpha_B \Phi \nabla^2 Q + 2(\alpha_M - \alpha_T)\Psi \nabla^2 Q \right]$$

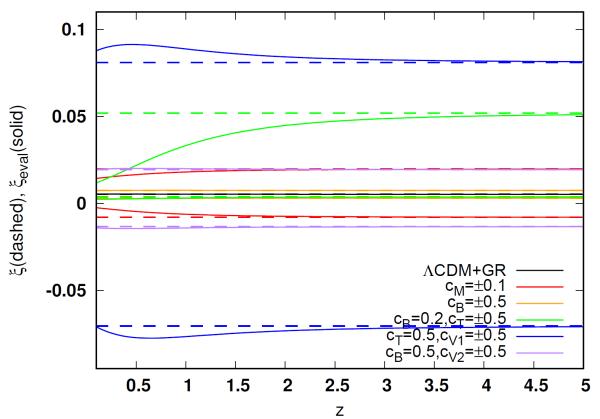
Nonlinear order

$$L_{\text{eff}}^{(NL)} = M^2/aH^2 \left[-(\alpha_{V1} + ...) L_3^{Gal} + (\alpha_{V1} + \alpha_{V2}) \Phi E_3^{Gal} - (1/2)(\alpha_{V2} + ...) \Psi E_3^{Gal} + ... \right]$$

[see Kobayashi+Watanabe+**DY**(2014), Hirano+Kobayashi+Tashiro+Yokoyama(2018) for GLPV]

Second-order index ξ in Horndeski

 \triangleright Second-order index ξ : $\lambda(a) = \Omega_{\rm m}(a)^{\xi}$



Large ξ model can be realized in Horndeski!

 $\xi_{\Lambda CDM+GR} = 3/572^{\sim}0.00524$

Simple model

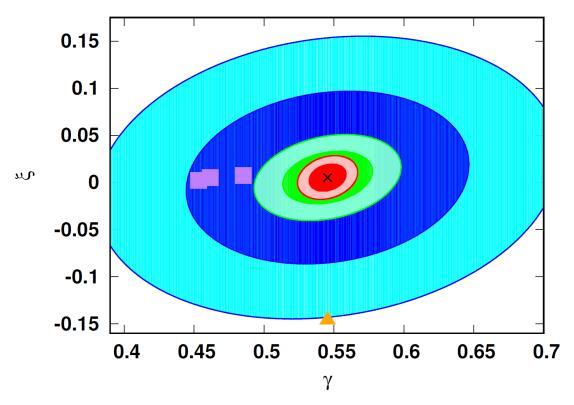
- \triangleright Assume that \land CDM as the background expansion, namely w(0)=-1.
- ➤ Taking the small braiding limit cB→0, the situation is drastically simplified:

$$\gamma(c_{\rm B}=0) = \frac{3(2-c_{\rm M})}{11+2c_{\rm M}},$$

$$\xi(c_{\rm B}=0) = \frac{3}{8(4+c_{\rm M})(13+2c_{\rm M})} \left[\frac{(8+c_{\rm M})(1-26c_{\rm M})}{11+2c_{\rm M}} + 21(c_{\rm M}-1)c_{\rm V1} \right].$$

- γ and ξ depend only on c_M and c_{V1} .
- We can realize the large ξ model in the case which can not be distinguished with the standard Λ CDM with GR up to the linear growth of density fluctuations!

Fisher analysis



Survey	$\Delta w_{ extsf{DE}}$	Δγ	Δξ
SKA1MID	0.135	0.067	0.060
SKA2	0.0085	0.0087	0.0094
Euclid	0.016	0.021	0.018

Summary

Measuring the galaxy bispectrtum induced by the late-time nonlinear gravitational evolution of the density fluctuations can be used to test the gravity theory through the linear growth rate and the second-order kernel.

 \checkmark Second-order index ξ : $\lambda(a) = \Omega_{\rm m}(a)^{\xi}$

Large ξ model

 \triangleright Set the form of Horndeski functions : $G_5 = 0$

$$K = -c_2 M_2^4 \left(\frac{X}{M_2^4}\right)^{p_2}, \quad G_3 = c_3 M_3 \left(\frac{X}{M_3^4}\right)^{p_3}, \quad G_4 = \frac{M_*^2}{2} - c_4 M_4^2 \left(\frac{X}{M_4^4}\right)^{p_4}$$

> Search tracker solution, which is characterized by the condition

$$H\dot{\phi}^{2q} = \text{const.}$$
 $p_2 = p$, $p_3 = p + q - \frac{1}{2}$, $p_4 = p + 2q$.

> Solving the background EoMs, the EFT parameters are given by

$$\alpha_{\rm B} = 2p \left(1 - \widetilde{\Omega}_{\rm m} \right) - 2\alpha_{\rm V1} \,, \quad \alpha_{\rm K} = 6q\alpha_{\rm B}$$

$$\alpha_{\rm M} = \frac{3}{2q} \widetilde{\Omega}_{\rm m} \frac{\alpha_{\rm V1}}{1 - \alpha_{\rm BK}} \,, \quad \alpha_{\rm T} = \frac{2\alpha_{\rm V1}}{1 - 2p - 4q}$$

 \triangleright Consider the small braiding limit and the large hierarchy |p/q| << 1:

$$\gamma \approx 0.545 \,, \quad \xi \approx 0.005 - 0.151 p$$

Scalar-tensor theory after GW170817

New constraint brought by the discovery of a GW event and its optical counterpart

✓ The speed of gravitational waves (" c_{GW} ") and that of light ("c") coincide to a very high precision :

$$-3 \times 10^{-15} < \alpha_{T} < 6 \times 10^{-16}$$

- ✓ Several possibilities:
 - ☐ (Extreme) fine-tuning
 - ☐ This observation is a strong indication that " c_{GW} " and "c" strictly coincide : c_{GW} =c