ancestor : someone from whom you are descended, "祖先"

Testing *ancestor* vacuum fluctuations as the origin of dark energy from galaxy surveys

Collaborators: Hajime Aoki (Saga U), Satoshi Iso (KEK), Yasuhiro Sekino (Takushoku U), Da-Shin Lee, Chen-Pin Yeh (National Dong-Hwa U)

Based on arXiv:1807.07904 Daisuke Yamauchi (Kanagawa University)

Inflation

- + Quantum tunneling
 + Dark energy
- = Fun!

<u>Ultralight scalar field</u> <u>and quantum backreaction</u>

D Superhorizon fluctuations can contribute to $\langle \phi^2 \rangle$

$$\left\langle \phi^2 \right\rangle = \int_{k < 1/aH} \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \left\langle |\phi_{\mathbf{k}}|^2 \right\rangle \approx \frac{H_{\mathrm{I}}^4}{m_0^2}$$
$$\left| \bigvee \right\rangle \left\langle T_{\mu\nu} \right\rangle \approx m_0^2 \left\langle \phi^2 \right\rangle g_{\mu\nu} \approx H_{\mathrm{I}}^4 g_{\mu\nu}$$

□ To have the same order of magnitude of DE, we need

$$H_{\rm I}^4 \approx \rho_{\Lambda} = \Omega_{\Lambda} H_0^2 M_{\rm P}^2$$

The low-energy scale of inflation is required.

<u>Our model</u>

□ Assumptions:

- ✓ Our Universe have been created by <u>bubble</u> <u>nucleation</u> due to *Coleman-De Luccia* (CDL) quantum tunneling
- Consider <u>a scalar field σ</u> to realize <u>the false</u>
 <u>vacuum decay</u>
- ✓ Consider another <u>ultralight scalar field ϕ </u> with < ϕ >=0 (i.e., fully quantum field)

<u>Our model</u>

Order-of-magnitude argument

- \blacksquare In the ancestor vacuum, the 2pt func is $\left<\phi^2\right>\approx \frac{H_{\rm A}^4}{m_{\rm A}^2}$
- **D** Assuming $m_0 \leq H_0$, the field is almost frozen until now.
- \Box The energy-momentum tensor for ϕ can read

$$\langle T_{\mu\nu} \rangle \approx m_0^2 \left\langle \phi^2 \right\rangle g_{\mu\nu} \approx H_{\rm A}^4 \left(\frac{m_0}{m_{\rm A}}\right)^2 g_{\mu\nu}$$

D To have $\rho \sim \rho_{\Lambda} \sim M_{P}^{2} H_{0}^{2}$, we just need

$$\frac{m_{\rm A}}{H_{\rm A}} \sim \frac{H_{\rm A}}{M_{\rm P}} \quad \rightarrow \text{Easier to realize!}$$

Difference from *quintessence*

- There is no ambiguity of the initial condition for the field, (unlike in classical analysis).
- **The mode of \phi is NOT strictly homogeneous** due to the gradient term <($\nabla \phi$)²>.

$$\rho = \frac{1}{a^2} \left\langle \frac{1}{2} {\phi'}^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 a^2 \phi^2 \right\rangle$$
$$P = \frac{1}{a^2} \left\langle \frac{1}{2} {\phi'}^2 - \frac{1}{6} (\nabla \phi)^2 - \frac{1}{2} m^2 a^2 \phi^2 \right\rangle$$
$$[almost frozen] \quad w = 1/3 \qquad w = 1$$

Observational features

- □ Universe created by CDL bubble nucleation should have negative spatial curvature : $\Omega_{K,0}$ > 0
- □ There is a pre-inflationary phase: Ancestor vacuum de Sitter expansion with Hubble H_A (> H_I)
- A "Supercurvature mode" represents the residual effect of the ancestor vacuum.

Power spectrum for scalar/tensor

[Aoki+Iso+Lee+Sekino+Yeh(2017)]

Energy-momentum tensor for SC

$$\begin{split} \rho_{\rm SC} &\approx \left(\frac{2\epsilon}{R_{\rm curv}^2 a^2} + \frac{1}{2}m_0^2\right) \left\langle \phi^2 \right\rangle_{\rm SC} \\ P_{\rm SC} &\approx -\left(\frac{2\epsilon}{3R_{\rm curv}^2 a^2} + \frac{1}{2}m_0^2\right) \left\langle \phi^2 \right\rangle_{\rm SC} \\ & \text{with } \left\langle \phi^2 \right\rangle_{\rm SC} \approx \frac{H_{\rm A}^4}{m_{\rm A}^2} \end{split}$$

The ancestor vacuum fluctuations can affect the evolution of the present Universe through EMT, and thus we can test the model of the ancestor vacuum DE.

Observational signatures

The equation-of-state (EOS) parameter can be obtained by taking the ratio of *P* and *ρ*, and becomes

$$w \approx \frac{\frac{2\epsilon}{3R_{\text{curv}}^2 a^2} + \frac{1}{2}m_0^2}{\frac{2\epsilon}{R_{\text{curv}}^2 a^2} + \frac{1}{2}m_0^2} \approx \frac{1 + \frac{2}{3}\tilde{\epsilon}(1+z)^2}{1 + 2\tilde{\epsilon}(1+z)^2}$$

□ The EoS parameter depends on a single parameter:

$$\widetilde{\epsilon} = \frac{\epsilon}{m_0^2 R_{\rm curv}^2} \approx \frac{(m_{\rm A}/H_{\rm A})^2}{(m_0/H_0)^2} \Omega_{\rm K,0}$$

Observational signatures

The amplitude of the energy density is determined by the cosmological constant :

$$\rho_{\rm SC} \approx 3M_{\rm P}^2 H_0^2 \Omega_{\Lambda} \left[1 + 2\tilde{\epsilon}(1+z)^2 \right]$$

D To extract the information of the ancestor vacuum, we need to detect $\tilde{\varepsilon}$ (or ξ) from observations !

$$\widetilde{\epsilon} \approx \frac{(m_{\rm A}/H_{\rm A})^2}{(m_0/H_0)^2} \Omega_{\rm K,0} = \xi \Omega_{\rm K,0}$$

<u>Meaning of </u>

□ The ancestor vacuum parameter H_A and m_A are fixed in terms of ξ (and Ω_A):

$$H_{\rm A} = \mathcal{O}(1)\xi^{1/2}M_{\rm P}$$
$$m_{\rm A} = \mathcal{O}(1)\xi\frac{m_0}{H_0}M_{\rm P}$$

Determination of ξ from observations corresponds to testing the energy-scale of the ancestor vacuum!

Note: If other observable, which is sensitive to not $\tilde{\varepsilon}$ but ε itself, we can distinguish m_A from m_0 . degeneracy along $(1 + 2\xi \Omega_{\Lambda}) \Omega_{K,0} = \text{const}$

Discussion

- **Π** There is a strong degeneracy along $(1+2\xi\Omega_{\Lambda})\Omega_{K,0} =$ constant direction.
 - (1.) The background equations strictly coincide with those in open- Λ CDM with the modified $\Omega_{K,0}$:

$$\frac{H^2}{H_0^2} = \frac{\Omega_{\mathrm{m},0}}{a^3} + \frac{(1+2\xi\Omega_\Lambda)\Omega_{\mathrm{K},0}}{a^2} + \Omega_\Lambda$$

The angular diameter distance $D_A(z)$, which is defined by using the true $\Omega_{K,0}$, can break this degeneracy.