2019/02/19 Cosmological challenges to dark matter, dark energy, and galaxy formation @Sao Paulo, Brazil

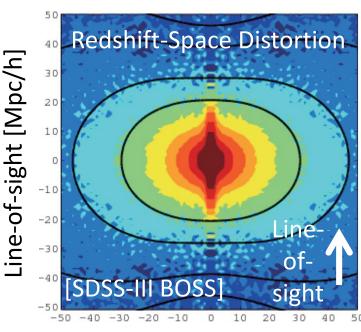
Cosmology and Dark Energy with future *HI* galaxy surveys

Daisuke Yamauchi

Kanagawa University

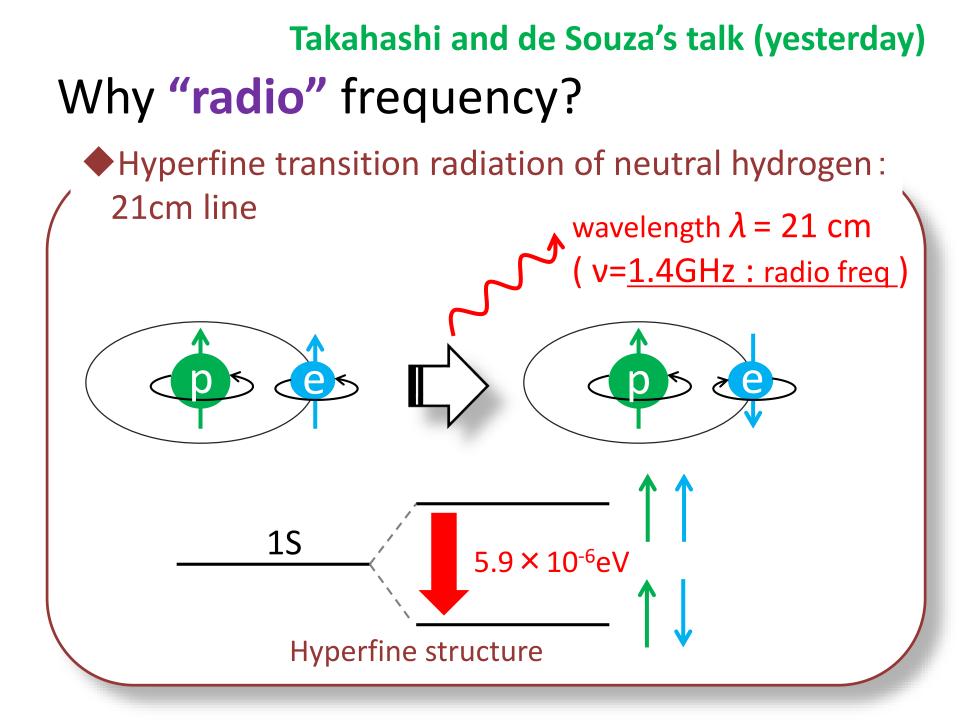
Cosmological observables

Cosmic Microwave Background


 \rightarrow radio

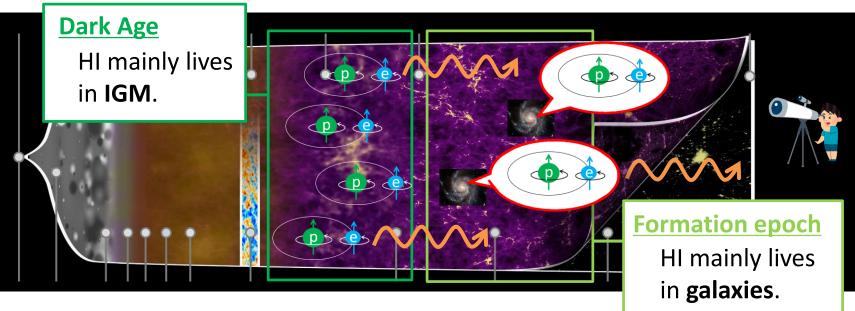
Large-Scale Structure

Baryon Acoustic Oscillation


- Redshift-Space Distortion
- Gravitational Lensing

→ optical + Radio (New!)
Complementary

CMB temperature map


Angular direction [Mpc/h]

Why "radio" frequency?

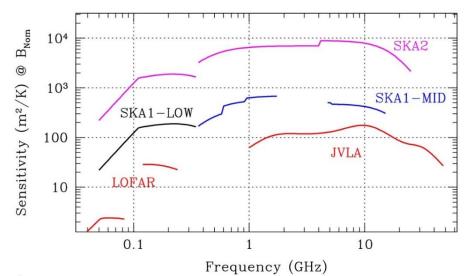
= Information of growth!

Brief Review of Square Kilometre Array

Square Kilometre Array

- Open a new window for Astronomy
 - ✓ New frequency regime

50MHz -- 10⁴MHz


✓ High sensitivity

collecting area : 1km²

✓ Wide sky coverage

available full-sky

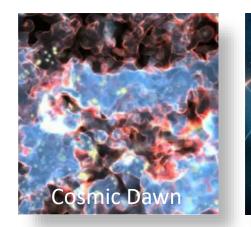
High angular resolution

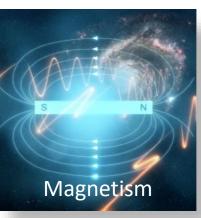
Movies from presentation by R. Brown (Science Director, SKAO)

SKA Phase 1 (2019 – 2028)

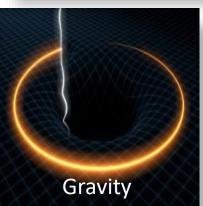
Phase 1: 130,000 antennas (512stations*256antennas) across 80km of Australia

Construction will start soon!


Scientific goals of SKA



The SKA aims to solve some of the biggest questions.


- Fundamental physics : Gravity, Dark Energy, Cosmic Magnetism
- Astrophysics : Cosmic Dawn, First galaxies, galaxy assembly and evolution, +...
- The unknowns : transients + ...

SKA Science Book/Red Book

SKA Science Book [2015] https://www.skatelescope.org/books/

Red Book [Bacon+DY+(2018)]

Cosmology with Phase 1 of the Square Kilometre Array

Red Book 2018: Technical specifications and performance forecasts

Contributions from Japanese community

SKA-Japan SKA Science Book — [2015, in Japanese(sorry!)]

SKA-Japan Consortium

Review (in English) [DY+(2016)]

Review

Cosmology with the Square Kilometre Array by SKA-Japan

Daisuke Yamauchi,^{1,*,†} Kiyotomo Ichiki,^{2,3} Kazunori Kohri,^{4,5} Toshiya Namikawa,^{6,7} Yoshihiko Oyama,⁸ Toyokazu Sekiguchi,⁹ Hayato Shimabukuro,^{2,10} Keitaro Takahashi,¹⁰ Tomo Takahashi,¹¹ Shuichiro Yokoyama,¹² and Kohji Yoshikawa¹³

http://ska-jp.org/ws2015/SKA-JP/talks/SKAJP_Science_Book_2015.pdf

Brief review of SKA Cosmological Surveys

HI [21-cm] line survey

The redshifting of HI-line provides the redshift information.

✓ HI galaxy redshift survey

• The 3D matter distributions can be reconstructed.

✓ Mid-freq HI intensity mapping [after CD/EoR]

- The detection of individual galaxies is not required.
- The integrated HI intensity of several galaxies in one pixel is measured. **de Souza's talk (yesterday)**

✓ Low-freq HI intensity mapping [before CD/EoR]

• Measure the large-scale distributions of the HI inside the IGM via the brightness temperature. **Takahashi's talk (yesterday)**

Radio continuum survey

- Measures galaxy synchrotron radiation radio emissions, which is advantageous in detecting high-z galaxies.
- Provides a featureless spectrum → The redshift info is not available.

Observable	Survey	SKA Phase	redshift	Sky coverage	Galaxy number
н	HI galaxy	Phase-1	z<0.8	1/8	~ 107
[21cm line]	survey (gal)	Phase-2	z<2	3/4	~ 10 ⁹
HI mappin	HI intensity	Phase-1	z<3	3/4	
	mapping survey (MID-IM)	Phase-2	z<3.7	3/4	
НІ	HI intensity	Phase-1	3 <z<27< td=""><td>1/40</td><td></td></z<27<>	1/40	
[21cm line]	mapping survey (LOW-IM)	Phase-2	3 <z<27< td=""><td>3/4</td><td></td></z<27<>	3/4	
Synchrotron	Continuum	Phase-1	z<6	3/4	~ 10 ⁸
radiation	survey (conti)	Phase-2	z<6	3/4	~ 10 ⁹
Optical	e.g. <i>Euclid</i>		z<2	3/8	~ 10 ⁸

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta\theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

Obser Ever	n phase-1 IM ai	nd RC surv	eys will cov	ver age	Galaxy number
the extremely large survey volume					~ 107
[21cn (available full sk	y out to ve	ery high-z)!	4	~ 10 ⁹
н	HI intensity	Phase-1	z<3	3/4	
[21cm line]	mapping survey (MID-IM)	Phase-2	z<3.7	3/4	
НІ	HI intensity	Phase-1	3 <z<27< td=""><td>1/40</td><td></td></z<27<>	1/40	
[21cm line]	mapping survey (LOW-IM)	Phase-2	3 <z<27< td=""><td>3/4</td><td></td></z<27<>	3/4	
Synchrotron radiation	Continuum survey (conti)	Phase-1	z<6	3/4	~ 10 ⁸
		Phase-2	z<6	3/4	~ 10 ⁹
Optical	e.g. <i>Euclid</i>		z<2	3/8	~ 10 ⁸

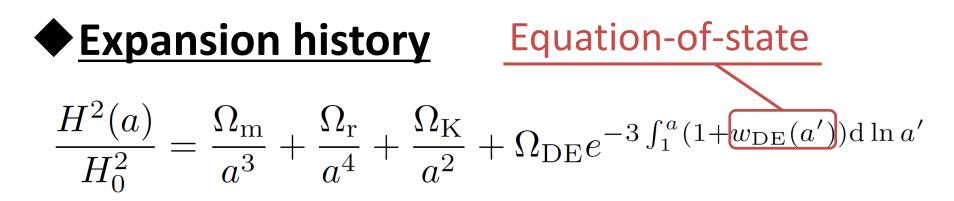
S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta\theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

When the Phase-2 is constructed, the flux threshold will be drastically improved (~5µJy), providing <i>the spectropic</i> <i>survey of 1 billion (!) HI galaxies</i> can be delivered.						
HI [21cm line]	HI garaxy survey (gal)	/ ⁺ 1	z<0.8	1/8	~ 10/	
		Phase-2	z<2	3/4	~ 10 ⁹	
HI [21cm line]	HI intensity mapping survey (MID-IM)	Phase-1	z<3	3/4		
		Phase-2	z<3.7	3/4		
НІ	HI intensity mapping survey (LOW-IM)	Phase-1	3 <z<27< td=""><td>1/40</td><td></td></z<27<>	1/40		
[21cm line]		Phase-2	3 <z<27< td=""><td>3/4</td><td></td></z<27<>	3/4		
Synchrotron radiation (conti)		Phase-1	z<6	3/4	~ 10 ⁸	
	•	Phase-2	z<6	3/4	~ 10 ⁹	
Optical	e.g. <i>Euclid</i>		z<2	3/8	~ 10 ⁸	

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta\theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

[SKA Phase 1 Science Priority Outcomes]

A Key Science with SKA

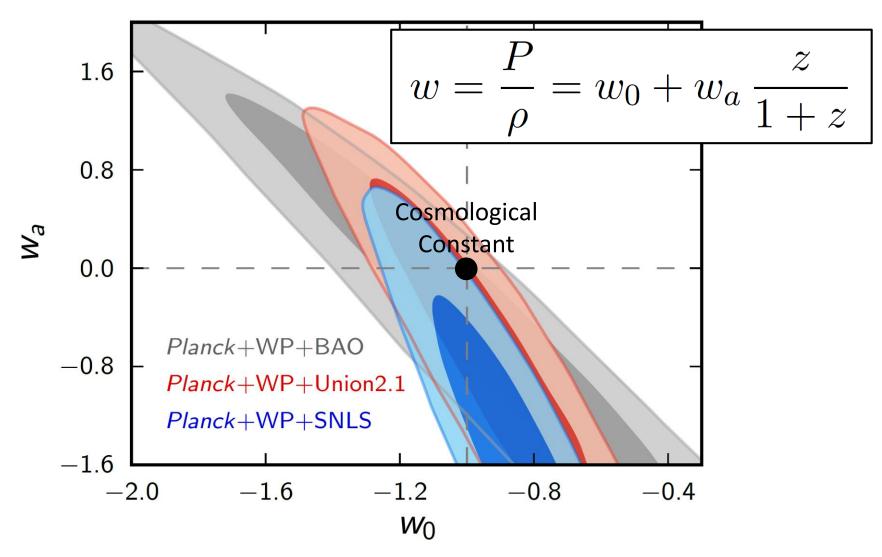

List of highest priority SKA1 science

Science Goal	SWG	Objective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

"Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales"

Cosmology and **Dark Energy** with HI galaxy surveys

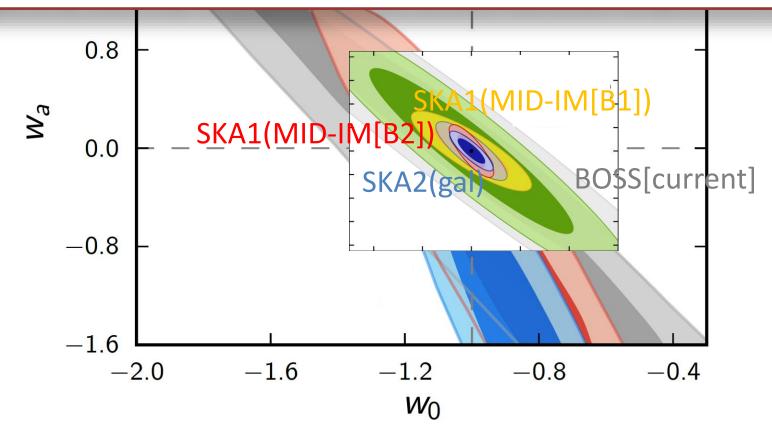
How do we characterize **Dark Energy**?


Growth of large-scale structure : δ=δρ/ρ

$$\delta(a, \mathbf{k}) = \delta_{\mathrm{L}}(a, \mathbf{k}) + \left[F_{2}(\mathbf{k}_{1}, \mathbf{k}_{2}; a) \, \delta_{\mathrm{L}}(a, \mathbf{k}_{1}) \star \delta_{\mathrm{L}}(a, \mathbf{k}_{2}) \right]_{\mathbf{k}} + \cdots$$
Growth index
$$\frac{\mathrm{d} \ln \delta_{\mathrm{L}}}{\mathrm{d} \ln a} = \Omega_{\mathrm{m}}(a)^{\gamma}$$

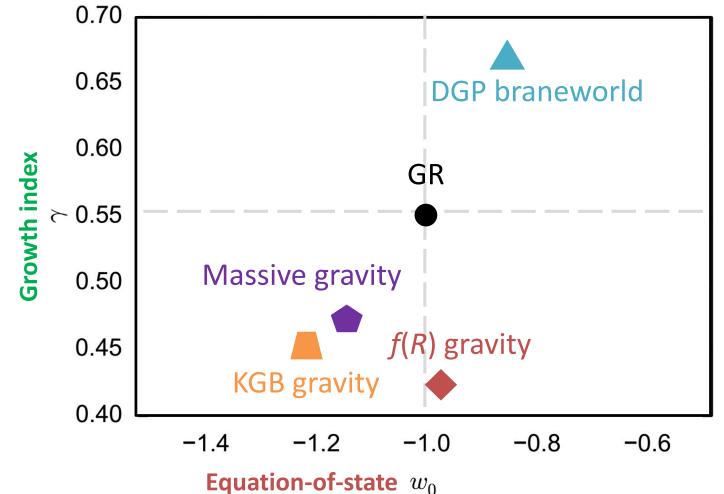
[Planck XIV(2013)]

Dark Energy Equation-of-State


Yamaguchi's talk

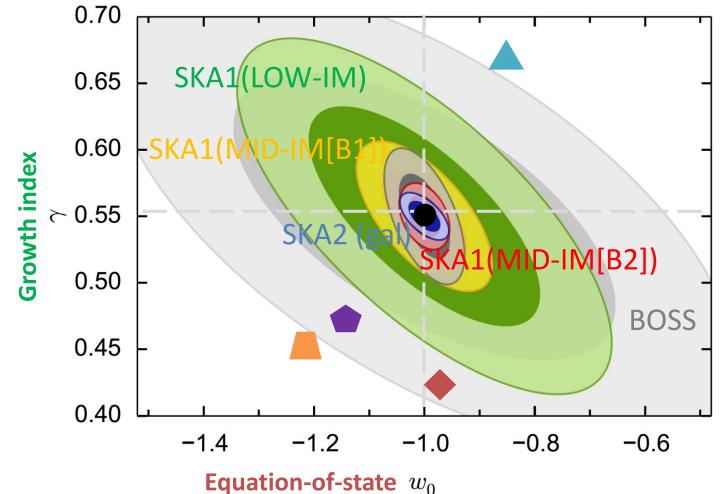
[Planck XIV(2013), SKA Science Book(BAO) (2015), Bull (2016)]

Dark Energy Equation-of-State

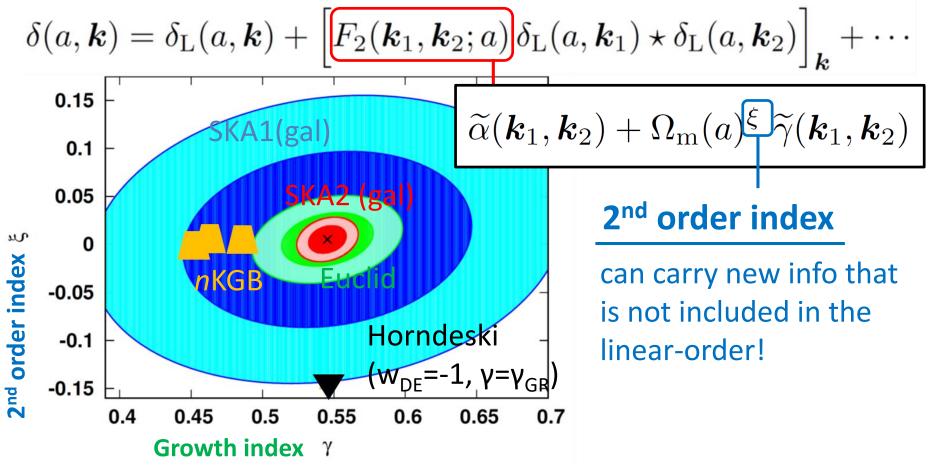

The SKA1 MID-IM survey will be able to provide comparable constraints with e.g. Euclid, and the SKA2 HI galaxy survey is expected to allow further improvements.

[Bull(2016), SKA Science Book(RSD) (2015)]

Growth index and Dark Energy


- can trace the (linear) growth history.
- can distinguish and hopefully exclude the dark energy models.

[Bull(2016), SKA Science Book(RSD) (2015)]


Growth index and Dark Energy

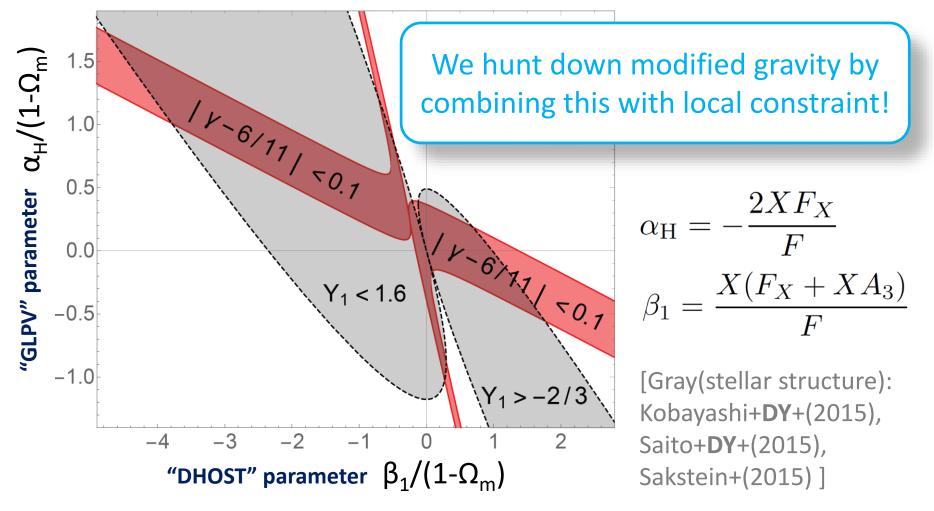
- can trace the (linear) growth history.
- can distinguish and hopefully exclude the dark energy models.

Quasi-nonlinear Growth and Dark Energy

- Even if w_{DE} =-1 and $\gamma = \gamma_{GR}$, it is <u>NOT</u> necessary that our Universe is described by Λ CDM with GR.
- Non-Gaussianity should be generated from nonlinear growth.

Dark Energy and Scalar-Tensor Theories

- Scalar-Tensor Theories have been widely studied as an alternative to the dark energy.
- □ GW170817+GRB 170817A gave the stringent constraint on the speed of GW : $|c_{GW}/c_{EM}$ -1|<10⁻¹⁵, which rules out theories which predict a variable GW speed. Yamaguchi's talk


The most general framework that has been developed so far

$$\mathcal{L} = F(\phi, X) R + A_3(\phi, X) \Box \phi \nabla^{\mu} \phi \nabla^{\nu} \phi \nabla_{\mu} \nabla_{\nu} \phi$$

+ $\frac{1}{8F} \Big[48F_X^2 - 8(F - XF_X)A_3 - X^2A_3^2 \Big] \nabla^{\mu} \phi \nabla_{\mu} \nabla_{\rho} \phi \nabla^{\rho} \nabla^{\nu} \phi \nabla_{\nu} \phi$
+ $\frac{1}{2F} (4F_X + XA_3) A_3 (\nabla^{\mu} \phi \nabla_{\mu} \nabla_{\nu} \phi \nabla^{\nu} \phi)^2$
[Langlois+Saito+**DY**+Noui (2018)]

[Hirano+Kobayashi+**DY**+Yokoyama (2019)]

Growth index and **Scalar-Tensor Theories**

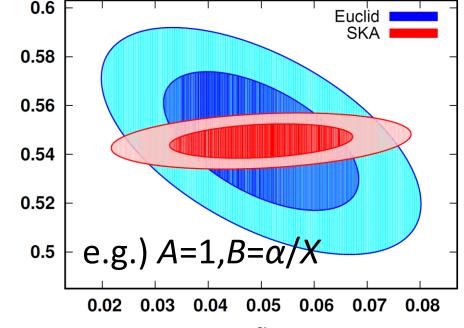
The precise measurement of growth of structure can provide the severe constraint on the wide class of modified gravity.

[Hirano+Kobayashi+**DY**+Yokoyama (2019)]

Growth index and **Scalar-Tensor Theories**

The precise measurement of growth of structure can provide the severe constraint on the wide class of modified gravity.

RSD and coupling between **DE** and **DM**


In the presence of a coupling between DE and DM through the conformal-disformal metric:

$$\overline{g}_{\mu\nu} = A(\phi, X)g_{\mu\nu} + B(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$

The information of coupling is encoded in the peculiar velocity field

= Redshift-Space Distortion!

Chibana's talk (tomorrow)

Summary

The SKA will provide new information of DE and hopefully single out the true model of DE.

Other topics :Various Synergies

With CMB observations: Delensing [Namikawa+DY+Sherwin+Nagata (2015)]

With optical galaxy survey : Multitracer
 (DY+ (2014), DY+K/Takahashi(2015), DY+Yokoyama+K.Takahashi(2016)]
 With particle physics : Lepton asymmetry, v,...
 [Kohri+Oyama+Sekiguchi+T.Takahashi (2014),...]

Thank you!