2019/11/20 Theoretical aspects of non-Gaussianity from modern perspectives@YITP

Constraining Primordial non-Gaussianity with future galaxy surveys

Daisuke Yamauchi

Kanagawa University

Current CMB constraint on PNG

CMB experiments are already close to <u>CV-limited</u> ones.

Experiments	f_{NL} (bispect	rum) f_{NL} (skewness)
COBE	600		800
MAP	20		80
Planck	5	[Komatsu	70
Ideal	3	+Spergel(2000)]	60

Current LSS constraint on PNG

◆Galaxy **power** spectrum

 $f_{\rm NI}^{\rm local} = -113 + -154 (1\sigma) [\text{Ho}+(2013)]$ $f_{\text{NI}}^{\text{local}} = 5 + 21 (1\sigma) [Giannaotonio+(2013)]$ $f_{\rm NI}^{\rm local} = -15 + -36 (2\sigma) [Castorina + (2019)]$ $x 10^{\circ}$ [Giannaotonio+(2013)] 5 gNL 0 -5 -10^{-10}_{-80} $\begin{array}{c} 0 \\ f_{NL} \end{array}$ -60 -40-2040 20 60 80

How do we constrain local PNG with galaxy surveys?

Galaxy bias

Galaxy number density contrast δ_{gal} does not exactly coincide with matter overdensity field δ_m , but ...

$$\delta_{gal} = F[\delta_m, ...]$$
$$= b_1 \delta_m + b_2 \delta_m^2/2 + ...$$

Linear bias Nonlinear bias (which is naturally induced by nonlinear gravitational evolution)

 \checkmark In the Gaussian case, the bias on large scales is scale-invariant.

f_{NL}^{local} induces scale-dependence(1)

[Dalal+Dore+Huterer+Shirokov(2008)]

"Rough" estimation

[Kazuhiro's talk]

*f*_{NL}^{local} induces scale-dependence(2)

[Smith+LoVerde(2011), Smith+Ferraro+LoVerde(2011)]

◆To be precise, let us decompose the potential into

$$\Phi = \Phi_{\text{short}} + \Phi_{\text{long}} \quad \text{[Yuichiro's talk]}$$
$$\blacksquare \downarrow \Delta_{\Phi} = (1 + 2f_{\text{NL}}\Phi_{\text{long}}) \Delta_{\Phi \text{short}} + \dots$$

The halo number density on large scales is given by

$$n_{halo} = n_{bg} + (dn/d\delta_{long}) \delta_{long} + 2f_{NL}(dn/d\Delta_{\Phi}) \phi_{long} + ...$$

*f*_{NL}^{local} induces scale-dependence(3)

➤ Local-type PNG induces $\Delta b \propto 1/k^2$ dependence such that the effect dominates at very large scales:

[Dalal+(2008), Desjacques+(2009)]

$f_{\rm NL}^{\rm local}$ induces scale-dependence(3)

$$P_{gg} = (b_1 + b_{NG}^{(f)} f_{NL}^{local} / k^2)^2 P_{mm}$$

$$f_{\rm NL}, g_{\rm NL}$$
 and $\tau_{\rm NL}$

$$f_{\rm NL}^{\rm local} \rightarrow \Delta b = b_{\rm NG}^{\rm (f)} f_{\rm NL}^{\rm local} / k^{2}$$

$$g_{\rm NL}^{\rm local} \rightarrow \Delta b = b_{\rm NG}^{\rm (g)} g_{\rm NL}^{\rm local} / k^{2}$$

$$\geq f_{\rm NL} + \tau_{\rm NL}^{\rm case}$$

$$P_{gg} = \left[(b_{1} + b_{\rm NG}^{\rm (f)} f_{\rm NL} / k^{2})^{2} + \left\{ (5/6)^{2} \tau_{\rm NL}^{\rm (f)} - f_{\rm NL}^{\rm (2)} \right\} (b_{\rm NG}^{\rm (f)})^{2} / k^{4} \right] P_{\rm mm}$$

$$\geq 0 \text{ (Suyama-Yamaguchi inequality)}$$

Constraining local PNG with galaxy survey

[Ferraro+Smith(2014)]

Constraining local PNG with minihalos

$f_{\rm NL}^{\rm equil}$, $f_{\rm NI}^{\rm fold}$ and $f_{\rm NI}^{\rm ortho}$ [e.g., Matsubara(2012)] $f_{\rm NI}^{\rm local} \rightarrow \Delta b \propto f_{\rm NI}^{\rm local} / k^2$ Relatively weak k-dependence $f_{\rm NI}$ equil $\rightarrow \Delta b \propto f_{\rm NI}$ equil $/k^0$ $f_{\rm NII}^{\rm fold} \rightarrow \Delta b \propto f_{\rm NII}^{\rm fold} / k^1$ $f_{\rm NL}^{\rm ortho} \rightarrow \Delta b \propto f_{\rm NI}^{\rm ortho} / k^1$

It is difficult to constrain non-local PNG with scale-dep bias...

[Yoo(2010), Challinor+Lewis(2011), Bruni+(2011),...]

Note: Relativistic corrections

The <u>observed</u> galaxy overdensity on superhorizon scales depends on the gravitational potentials:

In order not to bias the estimation of PNG, it will be crucial to correctly model the relativistic corrections !

Note: Relativistic corrections

 $f_{ t GR}$

Multi-tracer cosmology

Cosmic variance: fundamental limit to large-scale obs.

- Only a finite number of Fourier modes in our Hubble volume
- Biased populations probe the <u>same</u> DM field \rightarrow <u>deterministic</u>
- Tracer-dependent quantities are no CV-limited [Seljak(2008)]

Tracer1 $\delta_1 = (b_1 + f \mu^2) \delta_{DM}$ Tracer2 $\delta_2 = (b_2 + f \mu^2) \delta_{DM}$ Tracers are stochastic $\delta_1/\delta_2 = (b_1 + f \mu^2)/(b_2 + f \mu^2)$ Ratio is <u>deterministic</u>

Noise on MT quantities scales like shot noise

 \rightarrow Need high source density & large bias ratio

Multi-tracer cosmology

 \succ Error on cosmological parameter Θ

 $\sigma(\Theta) = (F_{\Theta\Theta})^{-1/2} = (dP/d\Theta \cdot Cov[P,P]^{-1} \cdot dP/d\Theta)^{-1/2}$

Single tracer case

 $\sigma(\ln P) = (P \cdot (P + N^{-1})^{-2} \cdot P)^{-1/2} \rightarrow 1 + O(1/PN)$

Even when N→∞, finite error remains. :Cosmic Variance [Seljak (2009), Hamaus+Seljak+Desjacques(2011)]

$$\sigma(\boldsymbol{\theta}) = (F_{\boldsymbol{\theta}\boldsymbol{\theta}})^{-1/2} = (d\boldsymbol{P}/d\boldsymbol{\theta} \cdot Cov[\boldsymbol{P},\boldsymbol{P}]^{-1} \cdot d\boldsymbol{P}/d\boldsymbol{\theta})^{-1/2}$$

[Seljak (2009), Hamaus+Seljak+Desjacques(2011)]

[Seljak (2009), Hamaus+Seljak+Desjacques(2011)]

Constraining power of MT

[Ferraro+Smith(2014)]

MT is **<u>effective</u>** for low shot-noise region.

Constraining $f_{\rm NL}^{\rm local}$ with SKA+Euclid

[DY+Takahashi+Oguri(2014)]

Constraining local PNG with SKA+Euclid

[DY+Takahashi(2015)]

Can we confirm SY-inequality?

fiducial f_{NII}

Can we confirm SY-inequality?

Confirming Suyama-Yamaguchi ineq.

[DY+Takahashi(2015)]

The region where $\underline{both} f_{NL}$ and τ_{NL} are detected at 1σ

Can we constrain non-local PNG with galaxy surveys?

Local-type/non-local type PNG

► Local type → Can be determined by scale-dependent bias $B_{\Phi}^{\text{local}}(k_1, k_2, k_3) = 2 f_{\text{NL}} (P_{\Phi}(k_1) P_{\Phi}(k_2) + \text{cyc})$

Non-local type

• Equilateral

$$B_{\Phi}^{eq}(k_1, k_2, k_3) = 6 f_{NL} [- (P_{\Phi}(k_1) P_{\Phi}(k_2) + cyc) - 2 (P_{\Phi}(k_1) P_{\Phi}(k_2) P_{\Phi}(k_3))^{2/3} + (P_{\Phi}^{1/3}(k_1) P_{\Phi}^{2/3}(k_2) P_{\Phi}(k_3) + 5perm)]$$

Orthogonal

$$B_{\Phi}^{\text{orth}}(k_1, k_2, k_3) = 6 f_{\text{NL}} [-3(P_{\Phi}(k_1)P_{\Phi}(k_2) + \text{cyc}) - 8 (P_{\Phi}(k_1)P_{\Phi}(k_2) P_{\Phi}(k_3))^{2/3} + 3 (P_{\Phi}^{1/3}(k_1)P_{\Phi}^{2/3}(k_2) P_{\Phi}(k_3) + 5\text{perm})$$

Can galaxy survey constrain these?

non-local type PNG is NOT sensitive to scale-dependent bias

$f_{\rm NL}^{\rm loc} \rightarrow \Delta b [f_{\rm NL}^{\rm loc}] \propto 1/k^2$			
$g_{\rm NL}^{\rm loc} \rightarrow \Delta b[g_{\rm NL}^{\rm loc}] \propto 1/k^2$ $\tau_{\rm NL}^{\rm loc} \rightarrow \Delta b[\tau_{\rm NL}^{\rm loc}] \propto 1/k^4$	 Strong low-k dependence → Scale-dependent bias in galaxy power spectrum 		
$f_{\rm NL}^{\rm eq} \rightarrow \Delta b[f_{\rm NL}^{\rm eq}] \propto 1/k^0$			
$f_{\rm NL}^{\rm fol} ightarrow \Delta b[f_{\rm NL}^{\rm fol}] \propto 1/k^1$	 Relatively weak 		
$f_{\rm NL}^{\rm orth} \rightarrow \Delta b [f_{\rm NL}^{\rm orth}] \propto 1/k^1$	→ Galaxy <u>bispectrum</u>		

[e.g., Matsubara(2012)]

Galaxy bispectrum

• Galaxy power spectrum for tracer (a) and (b)

 $P_{s}^{(a)(b)} = (b_{1}^{(a)} + f\mu_{1}^{2}) (b_{1}^{(b)} + f\mu_{2}^{2}) P_{L}(k)$

• Galaxy bispectrum for tracer (a), (b), and (c)

 $B_{s,grav}^{(a)(b)(c)} = (1/6)[(b_1^{(a)} + f\mu_1^2)(b_1^{(b)} + f\mu_2^2) \times (b_2^{(c)} + 2b_1^{(c)}F_2(k_1,k_2)) + (perm)]P_1(k_1)P(k_2) + cyc.$ Nonlinear 2nd order bias kernel bias kernel PNG contribution

MT for galaxy bispectrum

> For simplicity, let us consider equilateral bispectrum

 $B^{(abc)}(k,k,k) = (b_1^{(a)}b_1^{(b)}b_2^{(c)} + (perm))P_1^2(k)$ $\sigma(\boldsymbol{\theta}) = (F_{\boldsymbol{\theta}\boldsymbol{\theta}})^{-1/2} = (\mathbf{d}\boldsymbol{B}/\mathbf{d}\boldsymbol{\theta} \cdot \mathbf{Cov}[\boldsymbol{B},\boldsymbol{B}]^{-1} \cdot \mathbf{d}\boldsymbol{B}/\mathbf{d}\boldsymbol{\theta})^{-1/2}$ $B = \{ B^{(111)}, B^{(112)}, B^{(122)}, B^{(222)} \}$ = $\{ \alpha^2 \gamma B_2, (\alpha^2 + 2\alpha\gamma) B_2/3, (2\alpha + \gamma) B_2/3, B_2 \}$

MT for galaxy bispectrum

> For simplicity, let us consider equilateral bispectrum

 $B^{(abc)}(k,k,k) = (b_1^{(a)}b_1^{(b)}b_2^{(c)} + (perm))P_L^2(k)$ $\int \sigma(\gamma) = (F_{\gamma\gamma})^{-1/2} = (dB/d\gamma \cdot Cov[B,B]^{-1} \cdot dB/d\gamma)^{-1/2}$

 $\sigma(\gamma = b_2^{(1)}/b_2^{(2)})$ $\rightarrow (3P_2^{-3}/B_2^{-2})^{1/2} ((P_2N_1)^{-1} + \alpha^2 (P_2N_2)^{-1})^{1/2}$ Ratio of nonlinear bias factor is also determined only by shot noise!

[DY+Yokoyama+Takahashi(2017)]

Error on $f_{\rm NL}$ from galaxy bispectrum

MT is **<u>effective</u>** for low shot-noise region.

non-local $f_{\rm NL}$ with galaxy bispectrum

Scale-dependent PNG

Genelarized local-type bispectrum [Shandere+Dalal+Huterer (2011)]

 $B_{\Phi}(k_{1},k_{2},k_{3}) = 2 f_{\text{NL}}^{\text{eff}} \left[\xi_{\text{s}}(k_{3})\xi_{\text{m}}(k_{1})\xi_{\text{m}}(k_{2})P_{\Phi}(k_{1})P_{\Phi}(k_{2}) + \text{cyc.} \right]$ with $\xi_{\text{s,m}}(k) = (k/k_{\text{piv}})^{n_{f\text{NL}}(s,m)}$

- ✓ Galaxy bispectrum is useful to break the degeneracy!
- ✓ Scale-dependent <u>linear</u> bias is also induced.

[Matsubara(2012), Desjacques+ (2011), Shandere+ (2011)]

→ Combined analysis of galaxy power- and bi-spectrum

Constraining scale-dependent PNG

Can we reach $f_{\rm NL}$ ~0.01?

Far future 21cm line survey

[Cooray(2006)]

Short summary

Primoridial non-Gaussianity can be constrained by using future LSS surveys!

✓ Local-type PNG → galaxy power spectrum with scale-dependent bias

We may confirm (or reject) SY-inequality in near future(?).

✓ Non-local PNG → galaxy bispectrum

What's next?