2019/12/16 Observational Cosmology Workshop@Tohoku U.

SKA Cosmology

Daisuke Yamauchi

Kanagawa University

Square Kilometre Array

Collecting area : 1 km²

Frequency range: 50MHz-30GHz (cm-m; radio frequency)

Instrument

•LOW \rightarrow 1,000,000 dipole antennas

MID → 2,500 15m diameter dishes

Baseline

> Place

: 200km(LOW), 3,500km(MID)

: South Africa(MID), Australia(LOW)

Movies from presentation by R. Brown (Science Director, SKAO)

SKA Phase 1 (2019 – 2028)

Phase 1: 130,000 antennas (512stations*256antennas) across 80km of Australia

Scientific goals of SKA

The SKA aims to solve some of the biggest questions.

- Fundamental physics : Gravity, Dark Energy, Cosmic Magnetism
- Astrophysics : Cosmic Dawn, First galaxies, galaxy assembly and evolution, +...
- The unknowns : transients + ...

SKA Science Book/Red Book

SKA Science Book [2015] https://www.skatelescope.org/books/

Red Book [Bacon+DY+(2018)]

Cosmology with Phase 1 of the Square Kilometre Array

Red Book 2018: Technical specifications and performance forecasts

Contributions from Japanese community

日本版 Square Kilometre Array サイエンスブック 日本SKAコンソーシアム 利兰倫計研 2015

http://ska-jp.org/ws2015/SKA-JP/talks/SKAJP_Science_Book_2015.pdf

SKA-Japan Consortium

SKA-Japan SKA Science Book _______ [2015, 2020(in prep!)]

Review (in English) [DY+(2016)]

Review

Cosmology with the Square Kilometre Array by SKA-Japan

Daisuke YAMAUCHI,^{1,*,†} Kiyotomo ICHIKI,^{2,3} Kazunori KOHRI,^{4,5} Toshiya NAMIKAWA,^{6,7} Yoshihiko Oyama,⁸ Toyokazu SEKIGUCHI,⁹ Hayato SHIMABUKURO,^{2,10} Keitaro TAKAHASHI,¹⁰ Tomo TAKAHASHI,¹¹ Shuichiro Yokoyama,¹² and Kohji Yoshikawa¹³

Plan

1. Introduction

2. SKA Cosmological Surveys

3. SKA Cosmology

3.1 Dark Energy

3.2 Inflation

Why "radio" frequency?

• Hyperfine transition radiation of neutral hydrogen : 21cm line wavelength $\lambda = 21$ cm

Why "radio" frequency?

= Information of growth!

HI [21-cm] line survey

The redshifting of HI-line provides the redshift information.

HI galaxy redshift survey

• The 3D matter distributions can be reconstructed.

Mid-freq HI intensity mapping [after CD/EoR]

- The detection of individual galaxies is not required.
- The integrated HI intensity of several galaxies in one pixel is measured.

✓ Low-freq HI intensity mapping [before CD/EoR]

• Measure the large-scale distributions of the HI inside the IGM via the brightness temperature.

Radio continuum survey

- Measures galaxy synchrotron radiation radio emissions, which is advantageous in detecting high-z galaxies.
- Provides a featureless spectrum → The redshift info is not available.

Observable	Survey	SKA Phase	redshift	Sky coverage	Galaxy number
HI [21cm line]	HI galaxy survey (gal)	Phase-1	z<0.8	1/8	~ 107
		Phase-2	z<2	3/4	~ 10 9
HI [21cm line]	HI intensity mapping survey (MID-IM)	Phase-1	z<3	3/4	
		Phase-2	z<3.7	3/4	
HI [21cm line]	HI intensity mapping survey (LOW-IM)	Phase-1	3 <z<27< th=""><th>1/40</th><th></th></z<27<>	1/40	
		Phase-2	3 <z<27< td=""><td>3/4</td><td></td></z<27<>	3/4	
Synchrotron radiation	Continuum survey (conti)	Phase-1	z<6	3/4	~ 10 ⁸
		Phase-2	z<6	3/4	~ 10 ⁹
Optical	e.g. <i>Euclid</i>		z<2	3/8	~ 10 ⁸

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta\theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

Obser Ever	Galaxy number				
F ,	~ 107				
[21cn (available full sky out to very high-z)! 4 ~ 1					
Н	HI intensity	Phase-1	z<3	3/4	
[21cm line]	(MID-IM)	Phase-2	z<3.7	3/4	
HI [21cm line]	HI intensity mapping survey (LOW-IM)	Phase-1	3 <z<27< td=""><td>1/40</td><td></td></z<27<>	1/40	
		Phase-2	3 <z<27< td=""><td>3/4</td><td></td></z<27<>	3/4	
Synchrotron radiation	Continuum survey (conti)	Phase-1	z<6	3/4	~ 10 ⁸
		Phase-2	z<6	3/4	~ 10 ⁹
Optical	e.g. Euclid		z<2	3/8	~ 10 ⁸

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta\theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

When the Phase-2 is constructed, the flux threshold will be drastically improved (~5µJy), providing <i>the spectropic</i> <i>survey of 1 billion (!) HI galaxies</i> can be delivered.						
HI [21cm line]	HI garax, survey (gal)	f1	z<0.8	1/8	~ 10/	
		Phase-2	z<2	3/4	~ 10 ⁹	
HI [21cm line]	HI intensity mapping survey (MID-IM)	Phase-1	z<3	3/4		
		Phase-2	z<3.7	3/4		
HI [21cm line]	HI intensity	Phase-1	3 <z<27< td=""><td>1/40</td><td></td></z<27<>	1/40		
	mapping survey (LOW-IM)	Phase-2	3 <z<27< td=""><td>3/4</td><td></td></z<27<>	3/4		
Synchrotron radiation	Continuum survey (conti)	Phase-1	z<6	3/4	~ 10 ⁸	
		Phase-2	z<6	3/4	~ 10 ⁹	
Optical	e.g. Euclid		z<2	3/8	~ 10 ⁸	

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta\theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

SKA constraining power

- ✓ gal, MID-IM : high-precision measurement of BAO and RSD
- ✓ conti : No redshift info, but possible to detect high-z gal
- LOW-IM : fluc remains linearorder even on small scales

[SKA Phase 1 Science Priority Outcomes]

A Key Science with SKA

List of highest priority SKA1 science

Science Goal	SWG	Objective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	НІ	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

"Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales"

= "Inflation & Dark Energy"

1. Introduction

2. SKA Cosmological Surveys

3. SKA Cosmology

3.1 Dark Energy

3.2 Inflation

How do we characterize **Dark Energy**?

Growth of large-scale structure : δ=δρ/ρ

$$\delta(a, \mathbf{k}) = \delta_{\mathrm{L}}(a, \mathbf{k}) + \left[F_{2}(\mathbf{k}_{1}, \mathbf{k}_{2}; a) \, \delta_{\mathrm{L}}(a, \mathbf{k}_{1}) \star \delta_{\mathrm{L}}(a, \mathbf{k}_{2}) \right]_{\mathbf{k}} + \cdots$$
Growth index
$$\frac{\mathrm{d} \ln \delta_{\mathrm{L}}}{\mathrm{d} \ln a} = \Omega_{\mathrm{m}}(a)^{\gamma}$$

[SKA Cosmology Red Book(2018), Bull(2016)]

Cosmic expansion rate [BAO]

[SKA Cosmology Red Book(2018), Bull(2016)]

Growth rate [RSD]

[Planck XIV(2013)]

Dark Energy Equation-of-State

 W_0

[Planck XIV(2013)]

Dark Energy Equation-of-State

[Bull(2016), SKA Science Book(RSD) (2015)]

Growth index and Dark Energy

- can trace the (linear) growth history.
- can distinguish and hopefully exclude the dark energy models.

[Bull(2016), SKA Science Book(RSD) (2015)]

Growth index and Dark Energy

- can trace the (linear) growth history.
- can distinguish and hopefully exclude the dark energy models.

Dark Energy and Scalar-Tensor Theories

- □ Scalar-Tensor Theories have been widely studied as an alternative to the dark energy.
- □ GW170817+GRB 170817A gave the stringent constraint on the speed of GW : $|c_{GW}/c_{EM}$ -1|<10⁻¹⁵, which rules out theories which predict a variable GW speed.

The most general framework that has been developed so far

$$\mathcal{L} = F(\phi, X) R + A_3(\phi, X) \Box \phi \nabla^{\mu} \phi \nabla^{\nu} \phi \nabla_{\mu} \nabla_{\nu} \phi$$

+ $\frac{1}{8F} \Big[48F_X^2 - 8(F - XF_X)A_3 - X^2A_3^2 \Big] \nabla^{\mu} \phi \nabla_{\mu} \nabla_{\rho} \phi \nabla^{\rho} \nabla^{\nu} \phi \nabla_{\nu} \phi$
+ $\frac{1}{2F} (4F_X + XA_3) A_3 (\nabla^{\mu} \phi \nabla_{\mu} \nabla_{\nu} \phi \nabla^{\nu} \phi)^2$

[Langlois+Saito+DY+Noui (2018)]

[Hirano+Kobayashi+**DY**+Yokoyama (2019)]

Growth index and **Scalar-Tensor Theories**

The precise measurement of growth of structure can provide the severe constraint on the wide class of modified gravity.

Quasi-nonlinear Growth and Dark Energy

- Even if w_{DE} =-1 and $\gamma = \gamma_{GR}$, it is <u>NOT</u> necessary that our Universe is described by Λ CDM with GR.
- Non-Gaussianity should be generated from nonlinear growth.

1. Introduction

2. SKA Cosmological Surveys

3. SKA Cosmology

3.1 Dark Energy

3.2 Inflation

$f_{\rm NL}^{\rm local}$ induces scale-dependence

[Dalal+Dore+Huterer+Shirokov(2008)]

"Rough" estimation

$$\Phi_{NG} = \Phi_{G} + f_{NL}(\Phi_{G})^{2}$$

$$\int Acting the Laplacian on \Phi_{NG}...$$

$$7^{2}\Phi_{NG} = \nabla^{2}\Phi_{G} + 2f_{NL}\Phi_{G}\nabla^{2}\Phi_{G} + \cdots$$

$$\infty \delta_{NG} \qquad \infty \delta \qquad \infty \delta/k^{2} \qquad \infty \delta$$

$$\prod \delta_{NG} \simeq (1 + 2f_{NL}\Phi_{G})\delta$$

$f_{\rm NL}^{\rm local}$ induces scale-dependence

> Local-type PNG induces $\Delta b \propto 1/k^2$ dependence such that the effect dominates at very large scales:

[Dalal+(2008), Desjacques+(2009)]

$f_{\rm NL}^{\rm local}$ induces scale-dependence

$$P_{gg} = (b_1 + b_{NG}^{(f)} f_{NL}^{local} / k^2)^2 P_{mm}$$

Multi-tracer cosmology

Cosmic variance: fundamental limit to large-scale obs.

- Only a finite number of Fourier modes in our Hubble volume
- Biased populations probe the <u>same</u> DM field \rightarrow <u>deterministic</u>
- Tracer-dependent quantities are no CV-limited [Seljak(2008)]

Tracer1 $\delta_1 = (b_1 + f \mu^2) \delta_{DM}$ Tracer2 $\delta_2 = (b_2 + f \mu^2) \delta_{DM}$ Tracers are stochastic $\delta_1/\delta_2 = (b_1 + f \mu^2)/(b_2 + f \mu^2)$ Ratio is <u>deterministic</u>

Noise on MT quantities scales like shot noise

 \rightarrow Need high source density & large bias ratio

Constraining $f_{\rm NL}^{\rm local}$ with SKA+Euclid

[DY+Takahashi+Oguri(2014)]

Constraining local PNG with SKA+Euclid

[DY+Takahashi(2015)]

[DY+Takahashi(2015)]

Confirming Suyama-Yamaguchi ineq.

Consistency relation $\tau_{\rm NL} \ge ((6/5)f_{\rm NL})^2$

[Suyama+T.Takahashi+S.Yokoyama+(2010), Suyama+Yamaguchi(2008),...]

The region where **<u>both</u>** $f_{\rm NL}$ and $\tau_{\rm NL}$ are detected at 1 σ

<u>Non-local</u> f_{NL} with galaxy bispectrum

- SKA can provide the galaxy higher-order correlation.
- Galaxy bispectrum can constrain non-local PNG.

Summary

The SKA will be able to deliver competitive and transformational cosmology.

Other topics :Various Synergies

With CMB observations : Delensing [Namikawa+DY+Sherwin+Nagata (2015)]

With optical galaxy survey : Multitracer
 (DY+ (2014), DY+K.Takahashi(2015), DY+Yokoyama+K.Takahashi(2016)]
 With particle physics : Lepton asymmetry, v,...
 [Kohri+Oyama+Sekiguchi+T.Takahashi (2014),...]

Thank you!

SKA1 Phase-1 Design Baselineにおける宇宙論サーベイ

サーベイ	観測 時間[hr]	掃天 [deg ²]	赤方 偏移	サイエンス
Medium- Deep Band2 Survey	10,000	5,000	<0.4	連続線弱重カレンズ HI銀河赤方偏移 [磁場SWGとcommensal]
Wide Band1 Survey	10,000	20,000	0.35-3	連続線銀河サーベイ MID-HI強度マッピング [連続線SWGとcommensal]
Deep SKA1- LOW Survey	5,000	100	3-6	LOW-HI強度マッピング [LOW SWGとcommensal]