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INTRODUCTION
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Cosmic shear

What we can measure in the shear measurement is
the shape of galaxies modified by large scale structure.
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Jacobi map

The shape of galaxies modified by lensing is characterized
by the deformation of the two-dim spatial pattern:
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We should solve the Sachs equation for the Jacobi map:
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e dx
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e |
symmetric optical tidal matrix
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v Considering only scalar metric perturbations, the shear
(trace-free part of Jacobi map) has the well-known form;
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E-/B-mode decomposition

The shear field y,,, can be decomposed into even-parity
part (E-mode) and odd-parity part (B-mode).
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The non-vanishing B-mode shear signal would be a direct

evidence for non-scalar metric perturbations. .
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CMB lensing

What we observe is a subtly distorted version of
the primary CMB anisotropy.
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Deflection field

The distortion effect of lensing on the primary CMB is
expressed by a remapping with the deflection angle “A”.

~

O(n) = O(A + A)

Nz
20

Deflection field:

~

Unlensed : & A=Vo Lensed : ©

[figures : Hu+Okamoto(2002)]
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Deflection field (contd.)

The apparent position modified by the deflection angle
(that is what we really see) appears as a solution of the
geodesic equation for the CMB photon.

v’ For scalar metric perturbations,

g —
A, = dy X S (‘1’ - (I)) . Only gradient-mode!
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Gradient-/curl-mode decomposition

The two dimensional distortion vector 4 is decomposed
into gradient-mode: V ¢ and curl-mode: (*V )w .
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Question

In usual treatment of lensing, the symmetric trace-free part
of the gradient of the deflection A, (from geodesic eq.) can be
used as a proxy for the shear y_, (from Sachs eq.).

Is it always true?

Yab = A(a:b)

>

NO!
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SHEAR-DEFLECTION RELATION



Gauge-invariant metric perturbations

0goi = B|’L + b,
09ij = 2ROy + 2H ;5 + 2H )5 + hij
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Tensor metric pert.
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Deflection angle
with gauge invariant variables

Solving the geodesic equation in the gauge-invariant
manner, we obtain the deflection angle:

f
XS _
Aa:/ dX{XS XT:G_Qa}+Qa
0o X XS

0

with [see also Yoo (2009),...]
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Note : In the presence of the spin-1 part, that is vector og
and tensor h, there appears the curl-mode. 19



Shear field

with gauge invariant variables

Solving the Sachs equation for shear field, we have

XS dX spin-0 spin-1
Yab = /(; T{T%ab) - Q(a:b)} + Q(a:b)

1

+5 (o

0

spin-2
=) ‘0)

XS

Since the gauge degrees of freedom are completely removed in
the explicit expression for the tidal matrix, the resultant shear
field are manifestly gauge-invariant.
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auge-inv. shear-deflection relation
Spin-2 contributions
1

ﬁ (h<ab> 0):

v Metric shear [Dodelson+(2003)] / FNC term [Jeong+Schmidt(2012)]
(based on the geodesic eq)

—hy,
v | \ab)

Cosmic shear measurement via galaxy survey are usually referenced to
the coordinate in which galaxies are statistically isotropic. This is in
general different from our reference coordinate (FLRW). The correction
from the gravitational potential should appear.

In contrast to the previous studies, the metric shear/FNC term
naturally arises in our case from the Sachs equation
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Why does such correction appear
in Sachs equation?

dg00 = = —Rowmz
2

Bghi = = —5 foeimT’ ’]; h
1

5gZFJNC o ngjmxﬁxm

Since the leading correction of the metric in the FNC is known to
be described by the Riemann curvature, the FNC contribution is
automatically included in the symmetric tidal matrix perturbed

around FLRW. Daisuke Yamauchi (RESCEU) 22



LENSING POWER SPECTRA



In deriving lensing power spectrum,...

One complication is that while the weak lensing observables
are defined on a spherical sky, the metric perturbations usually
appear in the three-dim space.

Even decomposing the perturbations into the plane waves, they
contribute to many multipole due to their angular structure...

E.g.) Bardeen potential
A3k
®(x,n) = 2m)? D (1

Zﬁlw P (kx)YL' (7)

The situation is more complicated for vector/tensor perturbations...
24



Total angular momentum wave

Combining the intrinsic angular structure with that of the
plane-wave spatial dependence (TAM) substantially simplifies
the derivation of the full-sky formula!

é o0
(G = (=) A ARCRL D) () )+ sen(s), B (k) ) SYL ()
L=0

[originally developed by Hu+White (2001)]

It enables us to simultaneously treat the lensing by vector
and tensor modes on an equal footing with those generated
by scalar modes.
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TAM expansion

» The m=0, +-1, +-2 modes corresponds to the scalar, vector, and
tensor metric perturbations.
» We can isolate the total angular dependence by each perturbation.

v’ Spin-0 component
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A complete set of full-sky formula
for scalar/vector/tensor metric pert.

The m=0, +-1, +-2 modes corresponds to the
scalar, vector, tensor metric perturbations.
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Auto-power spectrum
for m-mode
» Transfer functions for X and X’
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@ Radial transfer functions for

E-/B-mode cosmic shear
» E-mode shear N(x;) : source redshift distribution

0 2)! 1 e X8 =X N(XS) 0,0
Sir = \/ =g ey (kx)
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1 1 N( ) (242)
> B-mode shear IVIetric shear/FNC term (from spin-2)

81(301)2 =0 ;

(£1) o .
Sse' =1 We explicitly show that B-mode is not generated by the
- m=0 mode (scalar metric perturbations), as is expected.
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Radial transfer functions for
gradient-/curl-mode CMB-lensing

» gradient mode

— 1
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Curl-mode is not generated by the m=0 mode
5=2) (scalar metric perturbations), as is expected.




APPLICATION



Primordial gravitational wave

As an application for the curl-/B-mode, let us consider the
primordial gravitational wave as the representative passive
sources for tensor perturbations.

» the tensor metric perturbations € m=+-2 modes
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The contribution from the PGW (m=+-2) are shown to coincide with those
derived by other authors [Dodelson+(2003), Schmidt+Jeong(2012)].
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Comparison between the statistical errors and the predictions
immediately follows that it is challenging to detect PGW via
the weak lensing measurement.

(Full-sky curl-mode estimator [Namikawa+DY+Taruya, 1110.1718]) 32



Cosmic strings

We consider the cosmic strings as intriguing examples of
the active source for vector and tensor perturbations.

(In this talk, 1 use the simple model for the string network to calculate analytically.)

» Line-like topological defects

» generally form during phase
transition in the very early
universe. [Jeannerot+(2003)]

» could be a probe for the early
phases of the universe before
the CMB epoch

[Hiramatsu+Sendouda+Takahashi+DY+Yoo, 1307.0308]
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Cosmic strings

We consider the cosmic strings as intriguing examples of
the active source for vector and tensor perturbations.

(In this talk, | use the simple model for the string network to calculate analytically.)

> the vector/tensor perturbations & m=+-1, +-2 modes
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(SIN)BB

B-mode shear from cosmic strings

[DY+Namikawa+Taruya, 1205.2139, 1305.3348]

Fiducial string parameters : String tension Gu =108, reconnection prob. P= 103
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(Full-sky curl-mode estimator [Namikawa+DY+Taruya 1110.1718])

url-deflection from cosmic strings

[DY+Namikawa+Taruya, 1205.2139, 1305.3348]
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The curl-mode measurement would provide not only a direct
probe of cosmic strings, but also a diagnosis helpful to check the
systematics in the derived constraints from the CMB TT. 36



@ Constraint on string parameters
from curl mode for ACT and Planck

[ GMP_l < 3.4 x 10" (95%CL, Planck) ]

S Lensing curl mode is more
O sensitive to small values of
C . ope
O 10 reconnection probability P
(V)
< compared to the small scale
> lo: Planck |
o0 Lo >2: Panck | temperature power spectrum.
(- > 30: Planck
o > 1o: ACT
A > 200 ACT
10 = > 30: ACT
S/ GKS 1 [Namikawa+DY+Taruya, 1308.6068]
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Summary

1. Gauge-invariant deflection-shear relation

)]

In contrast previous studies, the metric shear/FNC term
naturally arises in our case from Sachs eq.

—h ab
o Hab)

1
[ Yab = A(a:b} + 5 (h<ab>

2. Lensing power spectra with TAM

Total angular momentum method substantially simplifies
the derivation of the full-sky formula.

Thank you !



