

Constraining primordial non-Gaussianity with multitracer technique

山内 大介 ビッグバン宇宙国際研究センター

DY, K. Takahashi, M. Oguri, PRD90 083520 ,1407.5453

1.マルチトレーサー法とは?

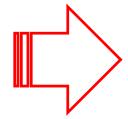
- 2. 応用: 原始非ガウス性 *f*_{NI}
 - \rightarrow SKA+Euclid $\rightarrow \sigma(f_{NI})^{\sim}O(0.1)$

- 3. さらなる応用(?)
 - ▶ 高次非ガウス性 τ_{NL}, g_{NL}
 - ▶ 修正重力理論探査

1.マルチトレーサー法とは?

- 2. 応用: 原始非ガウス性 f_{NI}
 - > SKA+Euclid $\rightarrow \sigma(f_{NI})^{\sim}O(0.1)$

- 3. さらなる応用(?)
 - \rightarrow 高次非ガウス性 τ_{NL} , g_{NL}
 - > 修正重力理論探査


全銀河

>数 : N_{tot}

 \triangleright 揺らぎ: $\delta_{gal} = b_{tot} \delta$

➤ 観測されるパワースペクトル

$$P_{\text{gal,obs}} = (b_{\text{tot}})^2 P + 1/N_{\text{tot}}$$

もし無限にたくさん銀河を観測したとしても $(N_{tot} \to \infty)$ 振幅はコズミックバリアンスで制限される

軽い銀河

重い銀河

- 数: N_I
 揺らぎ: δ_{gal,I} = b_I δ
 揺らぎ: δ_{gal,h} = b_h δ

➤ 観測されるパワースペクトル

重い

軽い

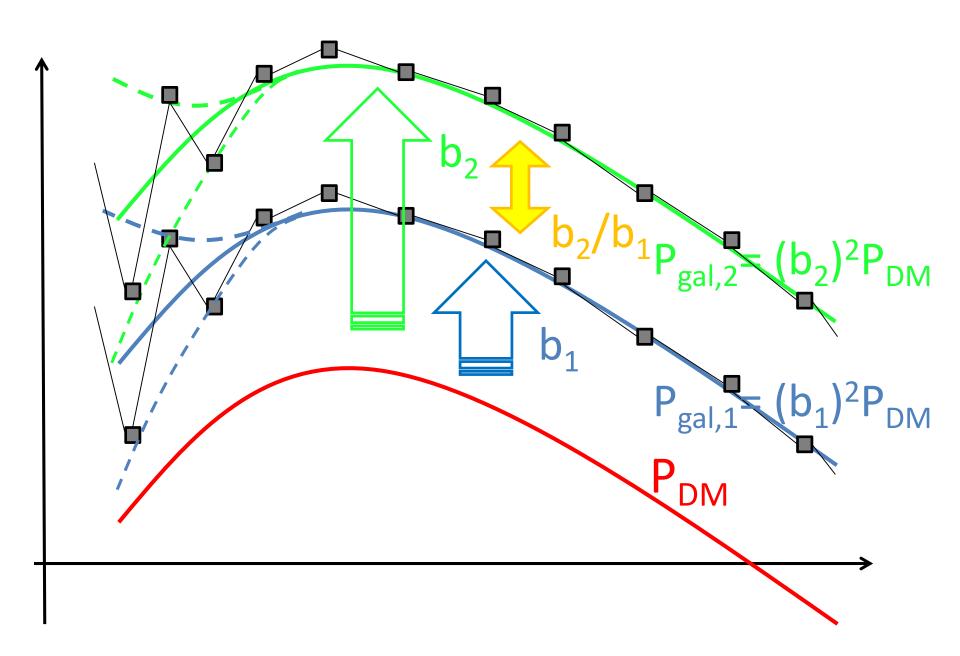
 $(b_1)^2 P + 1/N_1$

 $b_1 b_h P$

重い

 $b_1 b_h P$ $(b_h)^2 P + 1/N_h$

何が起こる?


>「振幅」の決定精度

$$\sigma(\ln P_{\text{gal}}) \sim 1/2 = 定数 $(N_l, N_h \rightarrow \infty)$
コズミックバリアンス!$$

▶ バイアスの「比」の決定精度

$$\sigma(b_h/b_l) \sim (N_l^{-1} + N_h^{-1})^{1/2} \quad (N_l, N_h \to \infty)$$

原理的にどこまでも小さくなることができる!

1.マルチトレーサー法とは?

2. 応用: 原始非ガウス性 *f*_{NI}

> SKA+Euclid $\rightarrow \sigma(f_{NI})^{\sim}O(0.1)$

3. さらなる応用(?)

- \rightarrow 高次非ガウス性 τ_{NL} , g_{NL}
- > 修正重力理論探査

原始非ガウス性

▶ (非ガウス重カポテンシャル) = (ガウス場) + (ガウス場)² + ...

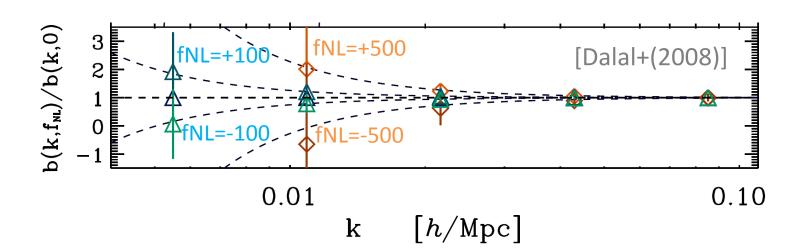
$$\Phi = \phi_{\rm G} + f_{\rm NL} \left(\phi_{\rm G}^2 - \left\langle \phi_{\rm G}^2 \right\rangle \right)$$

✓ 一番簡単なインフレーション: f_{NL} of O(0.01)!

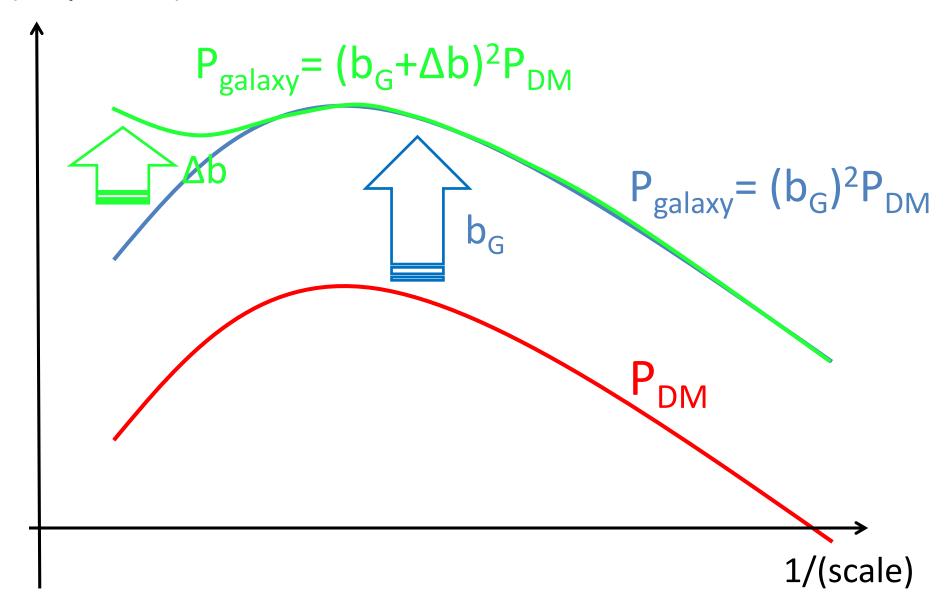
➤ CMBで調べると...

• WMAP: $\sigma(f_{NI}) < 100$ [Bennet+, 2013]

• Planck : $\sigma(f_{NI}) < 10$ [Planck collaboration, 2013]


• Ideal : $\sigma(f_{NI}) \sim 3$ [Komatsu+Spergel, 2001]

大規模構造での原始非ガウス性


▶ 原始非ガウス性 → スケールに依存するバイアス

[Dalal+(2008), Desjacques+(2009)]

$$\Delta b = \frac{2f_{\rm NL}\delta_{\rm c}}{\mathcal{M}D_{+}} (b_{\rm L} - 1) - \frac{1}{\delta_{\rm c}} \frac{\mathrm{d}}{\mathrm{d} \ln \nu} \left(\frac{\mathrm{d}n/\mathrm{d}M}{\mathrm{d}n_{\rm G}/\mathrm{d}M} \right)$$

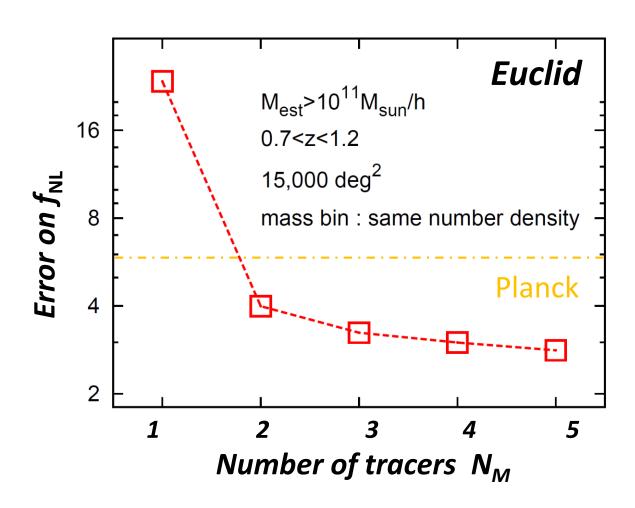
(amplitude)

Survey design

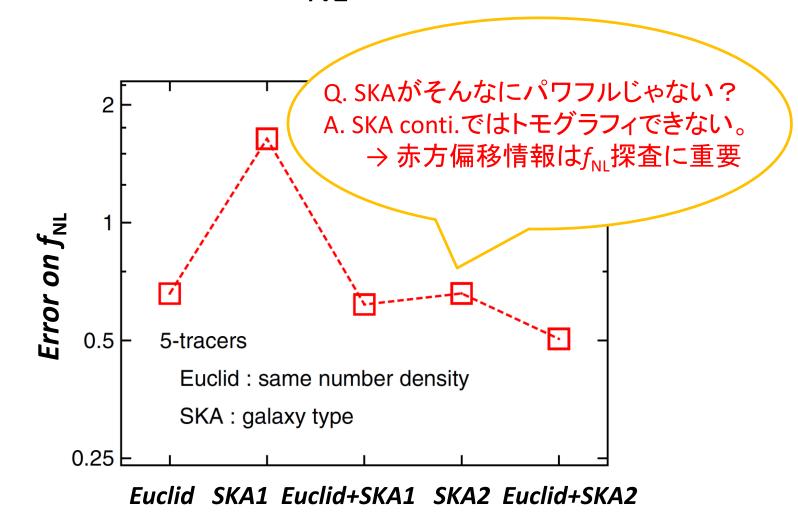
- Optical/infrared photometric survey: Euclid
 - Covers 15,000 [deg²] and z<2.5.
 - Provides redshift information via photometric redshifts
 - We use various galaxy properties to intermediately make

- Radio continuum survey : SKA phase-1/2
 - Covers 30,000 [deg²] out to high-z (z
 - The redshift information is not available.
 - Halo mass can be estimated from the [Ferramacho+ (2014)]
- SKA+Euclid: 9,000 [deg²]

質量-観測量関係

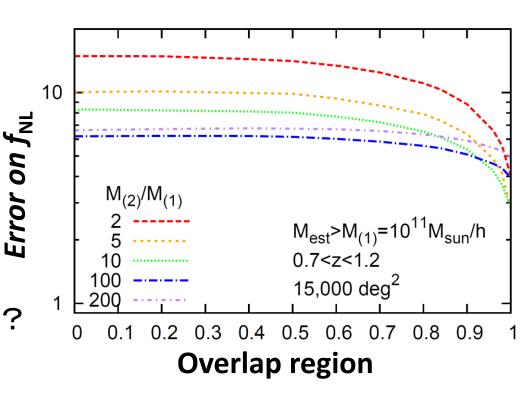

推定した質量 M_{obs} と真の質量Mは系統誤差が含まれる:

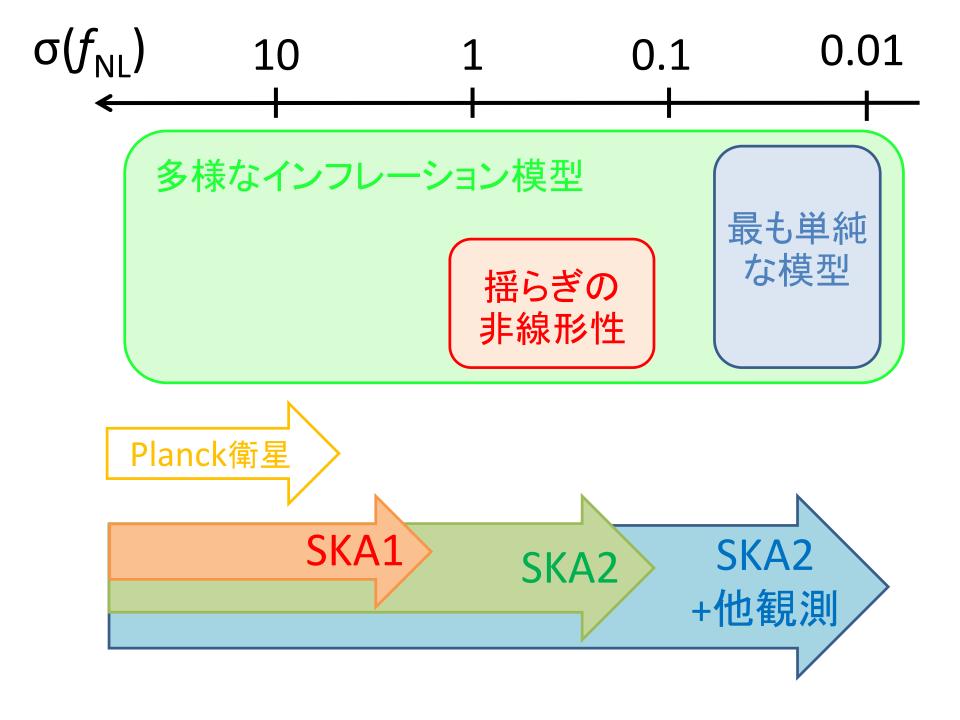
$$p(M_{\text{obs}}|M) = \frac{1}{\sqrt{2\pi\sigma_{\ln M}}} \exp\left[-x^2(M_{\text{obs}};M)\right]$$


$$\text{ZZC.} \quad x(M_{\text{obs}}; M) = \frac{\ln M_{\text{obs}} - \ln M - \ln M_{\text{bias}}}{\sqrt{2}\sigma_{\ln M}}$$

系統誤差
$$\begin{cases} \ln M_{\rm bias}(M,z) = \ln M_{\rm b,0} \\ + \sum_{i=1}^{3} q_{\rm b,i} \left[\ln \left(\frac{M}{M_{\rm piv}} \right) \right]^{i} + \sum_{i=1}^{3} s_{\rm b,i} z^{i}, \\ \sigma_{\ln M}(M,z) = \sigma_{\ln M,0} \\ + \sum_{i=1}^{3} q_{\sigma_{\ln M},i} \left[\ln \left(\frac{M}{M_{\rm piv}} \right) \right]^{i} + \sum_{i=1}^{3} s_{\sigma_{\ln M},i} z^{i}. \end{cases}$$

マルチトレーサー法は働く




サーベイごとのfmの推定誤差

SKAの決定精度向上に向けて...

- ▶ 赤方偏移情報の重要性:
 - ✓ SKA銀河赤方偏移サーベイでは?
 - ✓ 光赤外観測によるcross-ID → SKA銀河の赤方偏移を同定
- ▶ 質量ビンの分け方を改善:
 - ✓ 電波観測における 質量推定法?
- ▶別の手法?
 - ✓ 強度マッピング法では?

1. マルチトレーサー法とは?

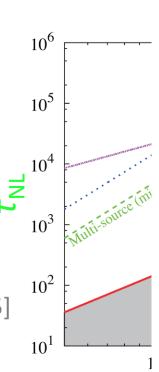
2. 応用: 原始非ガウス性 f_{NI}

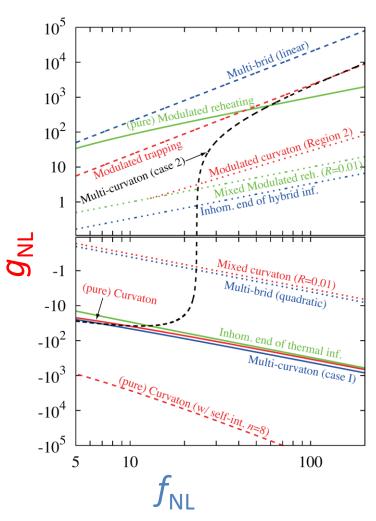
> SKA+Euclid $\rightarrow \sigma(f_{NI})^{\sim}O(0.1)$

- 3. さらなる応用(?)
 - 高次非ガウス性 τ_{NL}, g_{NL}
 - ▶ 修正重力理論探査

(局所型)高次原始非ガウス性

g_{NI} & τ_{NI}: 4点関数を特徴付ける

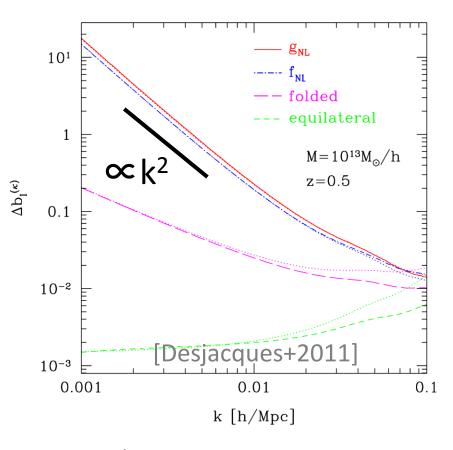

(参考 f_{NL}:3点関数)



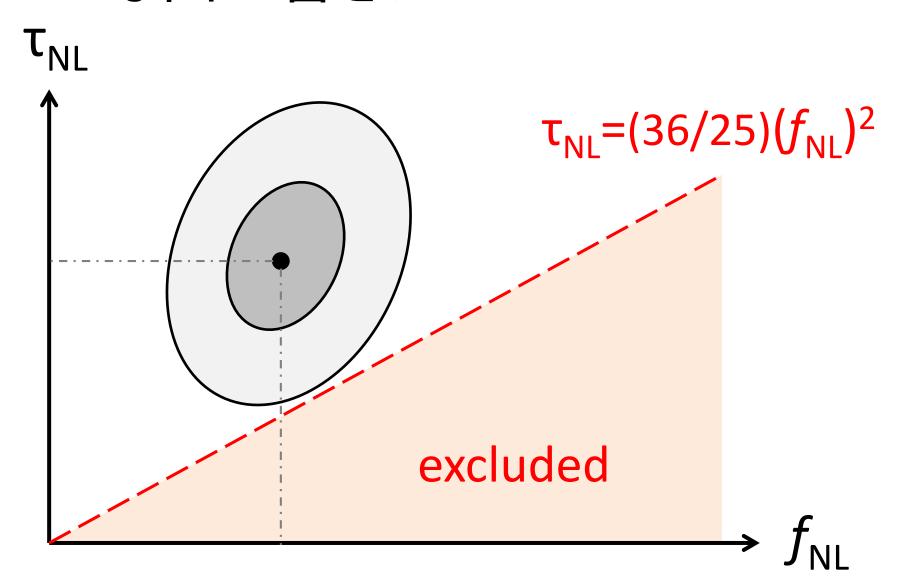
無矛盾条件 (須山-山口不等式)

$$\tau_{NL} \ge (36/25)(f_{NL})^2$$

[Suyama+Yamaguchi, PRD77, 023505] [cf. Sugiyama+(2011)]

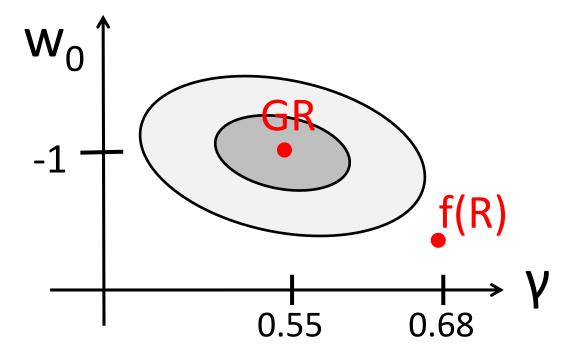


スケールに依存するバイアス


- $\checkmark f_{\rm NL} \rightarrow \Delta b[f_{\rm NL}] \propto 1/k^2$
- $\checkmark g_{\rm NI} \rightarrow \Delta b[g_{\rm NI}] \propto 1/k^2$
- $\sim \tau_{\rm NL} \rightarrow \Delta b[\tau_{\rm NL}] \propto 1/k^4$
- ✓非局所型 → 弱い依存性

バイアスを通じて探査可能!

 f_{NL} と g_{NL} はスケール依存性で縮退するが、マルチトレーサー法を用いることで縮退を解くことができる


こんな図が書きたい

RSD → 一般相対論テスト

$$\delta_{g}^{(s)}(\mathbf{k}, \mu) = (b_{g} + f\mu^{2})\delta(\mathbf{k}) + \epsilon.$$
Effective bias b Shot noise

β=f/bgの決定精度はパワースペクトル付随の サンプルバリアンスに依存→マルチトレーサー法

まとめ

▶マルチトレーサー法:コズミックバリアンスによらない!

• SKA+Euclid $\rightarrow \sigma(f_{\rm NL}) \sim 0.5$

▶SKA高精度化?

- ・ 赤方偏移→ SKA赤方偏移サーベイ/強度マッピング法では?
- 質量推定法?

▶将来?

- 高次原始非ガウス性: g_{NI}, τ_{NI}, n_{fNI}, ...→ バイアス?
- 成長率 f → GRのテスト