2015/04/07 EHQG seminar@Nagoya U.

Cosmic strings and their future detectability

YAMAUCHI, Daisuke

Research Center for the Early Universe (RESCEU), U. Tokyo

Cosmic strings

... are something like rubber bands, which

Are 1-dimensional objects

Have a tension

Are VERY USEFUL!

Cosmic strings

... are something like rubber bands, which

Are 1-dimensional objects

Have a tension

> Are VERY USEFUL!

Hiramatsu+Sendouda+Takahashi+**DY**+Yoo, 1307.0308

Cosmic strings

Phase transition

Scalar field settles down to true vacuum due to Hubble friction

Strings begin to appear

Hiramatsu+Sendouda+Takahashi+**DY**+Yoo, 1307.0308

COSMIC STRING ➢Inner structure

[Nielsen+Olsen (1973)]

➤ String tension

: energy-density per unit length

$\mu \sim (\text{phase transition energy})^2$

Why are cosmic strings still interesting?

Cosmic strings have a potential to reveal the high-energy physics during phase transition!

For GUT scale...

$$G_{\rm N}\,\mu = 10^{-6}\,(\mu/(10^{-3}M_{\rm pl})^2)$$

Contents

1. Introduction

2. Basic properties

- String network dynamics
- Reconnection
- String gravity
- 3. Observational prospects

4. Discussion

comoving box

Question1

How does string network evolve?

✓ Comoving : L_{str} ∝ a(t) ?
✓ Scaling : L_{str} ∝ 1/H(t) ?
✓ Anything else ?

Hubble length when simulation starts.

Hiramatsu+Sendouda+Takahashi+**DY**+Yoo, 1307.0308

Q1 : How does a string network evolve?

Scaling

Number of strings inside the Hubble volume is always O(1)!
Length of a string is always given by Hubble length 1/H.

Scaling

[Bevis+, 1005.2663]

[Hiramatsu+**DY**+Yoo+, 1307.0308]

Number of strings inside the Hubble volume is always O(1)!
Length of a string is always given by Hubble length 1/H.

Q2: What happens when 2 strings collide?

[cf. Salmi+, 0712.1204]

Reconnection

 Reconnection almost always happens! (P~1)
But in some case,

a junction may form:

[Hiramatsu+DY+Steer, in progress]

Loop formation and energy loss

When a string crosses itself, a loop separate from the string. The energy of long strings is converted into small string loops, which eventually shrink due to GW & scalar radiation.

String gravity

The nonvanishing energy-momentum tensor, $T_{\alpha\beta}$, modifies the spacetime metric $g_{\alpha\beta}$ through the Einstein eq.

For static straight sting lying along z-axis,

$$T^{0}_{0} = T^{z}_{z} = \mu \,\delta^{2}(\mathbf{x} - \mathbf{x}_{str})$$
$$T^{x}_{x} = T^{y}_{y} = 0$$

[Vilenkin (1981)]

[Vilenkin (1981)]

Conical structure

The spacetime around a straight cosmic string is "locally" flat.

$$ds^{2} = -dt^{2} + dz^{2} + dr^{2} + r^{2}d\theta^{2}$$
$$0 \le \theta \le 2\pi(1 - 4G\mu)$$
[Vilenkin+Shellard textbook]

An angular wedge of width $\Delta = 8\pi G\mu$ is removed from the space and the remaining edges identified.

Take-home message

We can obtain the robust predictions because...

SOME LOOPHOLES

[Lazarides+Shafi(1984), Shafi+Vilenkin(1984), Yokoyama (1988),...]

When do strings form?

Standard cosmic strings are produced at the phase-transition during radiation-dominated era.

The scaling can be achieved just after the formation.

[Lazarides+Shafi(1984), Shafi+Vilenkin(1984), Yokoyama (1988),...]

When do strings form?

[Lazarides+Shafi(1984), Shafi+Vilenkin(1984), Yokoyama (1988),...]

When do strings form?

Cosmic superstrings : Observable remnants of string theory

Fundamental strings, which are elementary objects in string theory, could stretch to macroscopic scale by the expansion of the Universe (without suffering instability).

[original:Witten(1985)] [Sarangi+Tye(2002), Jones+(2003), Dvali+Vilenkin(2004)]

Cosmic superstrings : Observable remnants of string theory

> There are several differences from the standard cosmic strings:

✓ Reconnection probability P

For standard strings $P \sim 1$ For cosmic superstrings P << 1

✓ Appearance of bound states
✓ Multiple tension network
✓ ...

[original:Witten(1985)] [Sarangi+Tye(2002), Jones+(2003), Dvali+Vilenkin(2004)]

Contents

1. Introduction

2. Basic properties

String network dynamics

➢ Reconnection

String gravity

3. Observational prospects

4. Discussion

Cosmic Microwave Background

➤Gravitational waves

Weak/strong gravitational lensing

Cosmic Microwave Background

Gravitational waves

>Weak/strong gravitational lensing

Cosmic Microwave Background

Gravitational waves

>Weak/strong gravitational lensing

Cosmic strings on the CMB sky

[Planck(2013)XXV]

Simulated CMB sky from only cosmic strings

100.0

string

(δT/T)/Gμ

CMB temperature anisotropies

Cosmic strings create line-like discontinuities in the CMB signal (through Integrated Sachs-Wolfe).

[Kaiser+Stebbins (1984), Gott III(1985)]

$$\frac{\delta T}{T} = 8\pi G \mu \frac{v}{\sqrt{1 - v^2}}$$

[For curved strings, **DY**+, 1004.0600, For kinks/cusps, Takahashi+**DY**+, 0811.4698]

[For curved strings, **DY**+, 1004.0600]

CMB temperature anisotropies

As the string moves across the line of sight, the CMB photons are boosted towards the observer.

A relative CMB temp shift across the string

[Kaiser+Stebbins (1984), Gott III(1985)]

CMB temperature power spectrum

The observations of the acoustic oscillation in the CMB have excluded strings as the dominant source of the CMB anisotropies:

 $G_{\rm N}\mu < 1.3 \times 10^{-7}$ (95%CL, P=1) [Planck(2013)XXV]

[DY+Sendouda+Takahashi, 1309.5528]

Detectability from future CMB obs.

(1) String-induced temprature 3-point functions

= (SSS-type) + (PS-type) + (SP-type)

[DY+Sendouda+Takahashi, 1309.5528]

Detectability from future CMB obs.

(1) String-induced temprature 3-point functions

= (SSS-type) + (PS-type) + (SP-type)

Detectability from future CMB obs.

(2) String-induced B-mode polarization

The presence of delayed-scaling strings improves the fit to the BICEP2+POLARBEAR data, although more data are required.

 $G\mu = 3 \times 10^{-7}, (L/H^{-1})_{\text{ini}} = 7500$

Detectability from future CMB obs.

(3) String-induced CMB lensing

:can provide a evidence for the intervening strings along a line of sight by measuring the spatial patterns of the deformation of the photon path.

Detectability from future CMB obs.

(3) String-induced CMB lensing

Strings continuously generate vector and tensor pert. even at late time, which induce the parity-odd mode signal.

[For parity-even mode for CMB lensing, **DY**+Takahashi+Sendouda+Yoo, 1110.0556]

Cosmic Microwave Background

Gravitational waves

>Weak/strong gravitational lensing

Gravitational waves from strings

- Oscillating loops of string can generate a potentially observable GW.
 - ✓GW burst
 - : GW with shot duration [<1s]

✓ Stochastic background

: produced by superposition of bursts from a string network.

[LIGO+Virgo collaborations, 0910.5772]

Stochastic background :

[LIGO+Virgo collaborations, 1310.2384]

Constraints on tension and initial loop length

[For delayed-scaling strings, Deno+**DY**+Yokoyama, in progress...]

Contents

1. Introduction

2. Basic properties

- String network dynamics
- ➢ Reconnection
- String gravity

3. Observational prospects

4. Discussion

Can we see bound states in a network?

When two (type-I or super-)strings collide, bound states and Y-junctions would be produced.

It is open question whether the (type-I) string network can dynamically create the bound states.

But 3-dim simulation requires heavy computational costs...

2-dim toy model : Impose translation sym along z-axis

Anyway, you can see bound states!

Type-I string network in 2-D simulations have the bound states!

- ✓ The evolution of the network with bound states
- ✓ How large is the fraction of higher winding strings ?

[Hiramatsu+**DY**, work in progress...]

Future

Modeling for loop distributions

- The constraint from GW amplitude strongly depends on it!
- Formulation for strong lensing
 - E.g. double images
- Bound states / Y-junctions
 - Observational consequence?

Thank you!

Summary

Anyway,...

Cosmic strings are fun!

Direct detection : strong lensing

The string with the deficit angle creates the double image with the very similar amplitude with a separation angle of order Gµ.

